scholarly journals Eastern Boundary Circulation and Hydrography Off Angola: Building Angolan Oceanographic Capacities

2018 ◽  
Vol 99 (8) ◽  
pp. 1589-1605 ◽  
Author(s):  
P. Tchipalanga ◽  
M. Dengler ◽  
P. Brandt ◽  
R. Kopte ◽  
M. Macuéria ◽  
...  

AbstractThe eastern boundary region off Angola encompasses a highly productive ecosystem important for the food security of the coastal population. The fish-stock distribution, however, undergoes large variability on intraseasonal, interannual, and longer time scales. These fluctuations are partly associated with large-scale warm anomalies that are often forced remotely from the equatorial Atlantic and propagate southward, reaching the Benguela upwelling off Namibia. Such warm events, named Benguela Niños, occurred in 1995 and in 2011. Here we present results from an underexplored extensive in situ dataset that was analyzed in the framework of a capacity-strengthening effort. The dataset was acquired within the Nansen Programme executed by the Food and Agriculture Organization of the United Nations and funded by the Norwegian government. It consists of hydrographic and velocity data from the Angolan continental margin acquired biannually during the main downwelling and upwelling seasons over more than 20 years. The mean seasonal changes of the Angola Current from 6° to 17°S are presented. During austral summer the southward Angola Current is concentrated in the upper 150 m. It strengthens from north to south, reaching a velocity maximum just north of the Angola Benguela Front. During austral winter the Angola Current is weaker, but deeper reaching. While the southward strengthening of the Angola Current can be related to the wind forcing, its seasonal variability is most likely explained by coastally trapped waves. On interannual time scales, the hydrographic data reveal remarkable variability in subsurface upper-ocean heat content. In particular, the 2011 Benguela Niño was preceded by a strong subsurface warming of about 2 years’ duration.

Author(s):  
Juan Sulca ◽  
Mathias Vuille ◽  
Oliver Elison Timm ◽  
Bo Dong ◽  
Ricardo Zubieta

AbstractPrecipitation is one of the most difficult variables to estimate using large-scale predictors. Over South America (SA), this task is even more challenging, given the complex topography of the Andes. Empirical-Statistical Downscaling (ESD) models can be used for this purpose, but such models, applicable for all of SA, have not yet been developed. To address this issue, we construct an ESD model based on multiple linear regression techniques for the period 1982-2016 that is based on large-scale circulation indices representing tropical Pacific, Atlantic, and South American climate variability, to estimate austral summer (DJF) precipitation over SA.Statistical analyses show that the ESD model can reproduce observed precipitation anomalies over the tropical Andes (Ecuador, Colombia, Peru, and Bolivia), the eastern equatorial Amazon basin, and the central part of the western Argentinian Andes. On a smaller scale, the ESD model also shows good results over the western Cordillera of the Peruvian Andes.The ESD model reproduces anomalously dry conditions over the eastern equatorial Amazon and the wet conditions over Southeastern South America (SESA) during the three extreme El Niño’s 1982/83, 1997/98, and 2015/16. However, it overestimates the observed intensities over SESA. For the central Peruvian Andes as a case study, results further show that the ESD model can correctly reproduce DJF precipitation anomalies over the entire Mantaro basin during the three extreme El ñ episodes.Moreover, multiple experiments with varying predictor combinations of the ESD model corroborate the hypothesis that the interaction between the South Atlantic Convergence Zone (SACZ) and the equatorial Atlantic Ocean provoked the Amazon drought in 2015/16.


2021 ◽  
Author(s):  
Franz Philip Tuchen ◽  
Joke F. Lübbecke ◽  
Peter Brandt ◽  
Yao Fu

<p>The shallow meridional overturning cells of the Atlantic Ocean, the subtropical cells (STCs), consist of poleward Ekman transport at the surface, subduction in the subtropics, equatorward flow at thermocline level and upwelling along the equator and at the eastern boundary. In this study, we provide the first observational estimate of transport variability associated with the horizontal branches of the Atlantic STCs in both hemispheres based on Argo float data and supplemented by reanalysis products.</p><p>Thermocline layer transport convergence and surface layer transport divergence between 10°N and 10°S are dominated by seasonal variability. Meridional thermocline layer transport anomalies at the western boundary and in the interior basin are anti-correlated and partially compensate each other at all resolved time scales. It is suggested that the seesaw-like relation is forced by the large-scale off-equatorial wind stress changes through low-baroclinic-mode Rossby wave adjustment. We further show that anomalies of the thermocline layer interior transport convergence modulate sea surface temperature (SST) variability in the upwelling regions along the equator and at the eastern boundary at time scales longer than 5 years. Phases of weaker (stronger) interior transport are associated with phases of higher (lower) equatorial SST. At these time scales, STC transport variability is forced by off-equatorial wind stress changes, especially by those in the southern hemisphere. At shorter time scales, equatorial SST anomalies are, instead, mainly forced by local changes of zonal wind stress.</p>


2018 ◽  
Vol 31 (24) ◽  
pp. 10105-10121 ◽  
Author(s):  
Yu Cheng ◽  
Lisa M. Beal ◽  
Ben P. Kirtman ◽  
Dian Putrasahan

We investigate the interannual variability of Agulhas leakage in an ocean-eddy-resolving coupled simulation and characterize its influence on regional climate. Many observational leakage estimates are based on the study of Agulhas rings, whereas recent model studies suggest that rings and eddies carry less than half of leakage transport. While leakage variability is dominated by eddies at seasonal time scales, the noneddy leakage transport is likely to be constrained by large-scale forcing at longer time scales. To investigate this, leakage transport is quantified using an offline Lagrangian particle tracking approach. We decompose the velocity field into eddying and large-scale fields and then recreate a number of total velocity fields by modifying the eddying component to assess the dependence of leakage variability on the eddies. We find that the resulting leakage time series show strong coherence at periods longer than 1000 days and that 50% of the variance at interannual time scales is linked to the smoothed, large-scale field. As shown previously in ocean models, we find Agulhas leakage variability to be related to a meridional shift and/or strengthening of the westerlies. High leakage periods are associated with east–west contrasting patterns of sea surface temperature, surface heat fluxes, and convective rainfall, with positive anomalies over the retroflection region and negative anomalies within the Indian Ocean to the east. High leakage periods are also related to reduced inland convective rainfall over southeastern Africa in austral summer.


2012 ◽  
Vol 25 (10) ◽  
pp. 3583-3598 ◽  
Author(s):  
Jieshun Zhu ◽  
Bohua Huang ◽  
Zhaohua Wu

Abstract This study examines a mechanism of the interaction between the tropical Atlantic meridional and equatorial modes. To derive robust heat content (HC) variability, the ensemble-mean HC anomalies (HCA) of six state-of-the-art global ocean reanalyses for 1979–2007 are analyzed. Compared with previous studies, characteristic oceanic processes are distinguished through their dominant time scales. Using the ensemble empirical mode decomposition (EEMD) method, the HC fields are first decomposed into components with different time scales. The authors’ analysis shows that these components are associated with distinctive ocean dynamics. The high-frequency (first three) components can be characterized as the equatorial modes, whereas the low-frequency (the fifth and sixth) components are featured as the meridional modes. In between, the fourth component on the time scale of 3–4 yr demonstrates “mixed” characteristics of the meridional and equatorial modes because of an active transition from the predominant meridional to zonal structures on this time scale. Physically, this transition process is initiated by the discharge of the off-equatorial HCA, which is first accumulated as a part of the meridional mode, into the equatorial waveguide, which is triggered by the breakdown of the equilibrium between the cross-equatorial HC contrast and the overlying wind forcing, and results in a major heat transport through the equatorial waveguide into the southeastern tropical Atlantic. It is also shown that remote forcing from El Niño–Southern Oscillation (ENSO) exerts important influence on the transition from the equatorial to meridional mode and may partly dictate its time scale of 3–4 yr. Therefore, the authors’ results demonstrate another mechanism of the equatorial Atlantic response to the ENSO forcing.


2018 ◽  
Vol 31 (15) ◽  
pp. 5845-5872 ◽  
Author(s):  
Benjamin Pohl ◽  
Bastien Dieppois ◽  
Julien Crétat ◽  
Damian Lawler ◽  
Mathieu Rouault

During the austral summer season (November–February), southern African rainfall, south of 20°S, has been shown to vary over a range of time scales, from synoptic variability (3–7 days, mostly tropical temperate troughs) to interannual variability (2–8 years, reflecting the regional effects of El Niño–Southern Oscillation). There is also evidence for variability at quasi-decadal (8–13 years) and interdecadal (15–28 years) time scales, linked to the interdecadal Pacific oscillation and the Pacific decadal oscillation, respectively. This study aims to provide an overview of these ranges of variability and their influence on regional climate and large-scale atmospheric convection and quantify uncertainties associated with each time scale. We do this by applying k-means clustering onto long-term (1901–2011) daily outgoing longwave radiation anomalies derived from the 56 individual members of the Twentieth Century Reanalysis. Eight large-scale convective regimes are identified. Results show that 1) the seasonal occurrence of the regimes significantly varies at the low-frequency time scales mentioned above; 2) these modulations account for a significant fraction of seasonal rainfall variability over the region; 3) significant associations are found between some of the regimes and the aforementioned modes of climate variability; and 4) associated uncertainties in the regime occurrence and convection anomalies strongly decrease with time, especially the phasing of transient variability. The short-lived synoptic anomalies and the low-frequency anomalies are shown to be approximately additive, but even if they combine their respective influence at both scales, the magnitude of short-lived perturbations remains much larger.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 758
Author(s):  
Wayne Yuan-Huai Tsai ◽  
Mong-Ming Lu ◽  
Chung-Hsiung Sui ◽  
Yin-Min Cho

During the austral summer 2018/19, devastating floods occurred over northeast Australia that killed approximately 625,000 head of cattle and inundated over 3000 homes in Townsville. In this paper, the disastrous event was identified as a record-breaking subseasonal peak rainfall event (SPRE). The SPRE was mainly induced by an anomalously strong monsoon depression that was modulated by the convective phases of an MJO and an equatorial Rossby (ER) wave. The ER wave originated from an active equatorial deep convection associated with the El Niño warm sea surface temperatures near the dateline over the central Pacific. Based on the S2S Project Database, we analyzed the extended-range forecast skill of the SPRE from two different perspectives, the monsoon depression represented by an 850-hPa wind shear index and the 15-day accumulated precipitation characterized by the percentile rank (PR) and the ratio to the three-month seasonal (DJF) totals. The results of four S2S models of this study suggest that the monsoon depression can maintain the same level of skill as the short-range (3 days) forecast up to 8–10 days. For precipitation parameters, the conclusions are similar to the monsoon depression. For the 2019 northern Queensland SPRE, the model forecast was, in general, worse than the expectation derived from the hindcast analysis. The clear modulation of the ER wave that enhanced the SPRE monsoon depression circulation and precipitation is suspected as the main cause for the lower forecast skill. The analysis procedure proposed in this study can be applied to analyze the SPREs and their associated large-scale drivers in other regions.


2006 ◽  
Vol 63 (1-2) ◽  
pp. 20-34 ◽  
Author(s):  
N. Anilkumar ◽  
Alvarinho J. Luis ◽  
Y.K. Somayajulu ◽  
V. Ramesh Babu ◽  
M.K. Dash ◽  
...  

2017 ◽  
Vol 30 (22) ◽  
pp. 9195-9211 ◽  
Author(s):  
John T. Fasullo ◽  
Peter R. Gent

Abstract An accurate diagnosis of ocean heat content (OHC) is essential for interpreting climate variability and change, as evidenced for example by the broad range of hypotheses that exists for explaining the recent hiatus in global mean surface warming. Potential insights are explored here by examining relationships between OHC and sea surface height (SSH) in observations and two recently available large ensembles of climate model simulations from the mid-twentieth century to 2100. It is found that in decadal-length observations and a model control simulation with constant forcing, strong ties between OHC and SSH exist, with little temporal or spatial complexity. Agreement is particularly strong on monthly to interannual time scales. In contrast, in forced transient warming simulations, important dependencies in the relationship exist as a function of region and time scale. Near Antarctica, low-frequency SSH variability is driven mainly by changes in the circumpolar current associated with intensified surface winds, leading to correlations between OHC and SSH that are weak and sometimes negative. In subtropical regions, and near other coastal boundaries, negative correlations are also evident on long time scales and are associated with the accumulated effects of changes in the water cycle and ocean dynamics that underlie complexity in the OHC relationship to SSH. Low-frequency variability in observations is found to exhibit similar negative correlations. Combined with altimeter data, these results provide evidence that SSH increases in the Indian and western Pacific Oceans during the hiatus are suggestive of substantial OHC increases. Methods for developing the applicability of altimetry as a constraint on OHC more generally are also discussed.


2013 ◽  
Vol 718-720 ◽  
pp. 1872-1877 ◽  
Author(s):  
Xu Xi Chang ◽  
Xie Jian Ming ◽  
Jiang Ling Fa ◽  
Chen Shan Xiong

Currently, the soil-aggregate mixture has been widely used in some large-scale site preparation projects, compaction characteristics has been pay more attention by many engineers and researchers. However, systematic research is insufficient on how to choose the filler. Moreover, some industry regulations are different on the requirements about filler. This paper relies on a certain big site preparation projects, discussing statistical characteristics and correlation on the maximal grain size, contents of the coarse grain, gradation and other parameters of soil-aggregate mixture. The results show that the maximal and the median grain size have small discreteness and normal distribution, indicating site filler is easy to reach the requirement; The coefficient of curvature, coefficient of nonuniformity and the coarse grain content have large discreteness, and dont obey normal distribution, indicating the filler has large variability. The median grain size is highly relevant to the coarse grain content; the maximal grain size isnt relevant to the coefficient of nonuniformity, the coefficient of curvature and the coarse grain content. According to the results of correlation analysis, we suggest that the importance order follow by coarse grain content, the maximum grain size and gradation for the control parameters of filler. This research may be significant to other similar projects.


1980 ◽  
Vol 37 (11) ◽  
pp. 2202-2208 ◽  
Author(s):  
Carl J. Walters ◽  
George Spangler ◽  
W. J. Christie ◽  
Patrick J. Manion ◽  
James F. Kitchell

The Sea Lamprey International Symposium (SLIS) has provided a broad spectrum of facts and speculations for consideration in future research and management programs. Many aspects of the laboratory biology and field life history of the sea lamprey (Petromyzon marinus) are now well understood. There is little question that it can now be controlled by chemical larvicides, and perhaps in the future by more efficient integrated control programs. There is correlative evidence (wounds, scars, catch curves) that lamprey caused major mortalities in some fish species, and that control in conjunction with stocking has lead to remarkable recoveries of salmonid stocks in the Great Lakes. However, there are great gaps in understanding about just what the lamprey does under field conditions, and it is not yet possible to reject several hypotheses that assign lamprey a minimum or transient role in fish stock changes. Further studies on details of lamprey biology are, in themselves, unlikely to fill the gaps; one alternative is to conduct a large-scale field experiment involving cessation of lamprey control while holding other factors (fishing, stocking) as steady as possible. If it is decided to proceed with management on the assumption that lamprey are important, without the major field experiments to confirm it, then at least the following steps should be taken: (1) the chemical treatment program should be reviewed in detail, with a view to finding treatment schedules that will minimize frequency and dose rates for lampricide applications; (2) pilot studies on alternative control schemes (sterile male, attractants, barriers) should only be funded if they are statistically well designed (several replicate and control streams), and involve quantitative monitoring of lamprey spawning success and subsequent total production of transforming larvae; (3) the lake trout (Salvelinus namaycush) stocking program should be maintained at its present level, and should involve diverse genotypes rather than a few hatchery strains; (4) growth in the sport fisheries for lake trout should be curtailed, and commercial fisheries should not yet be permitted; (5) a multispecies harvesting policy should be designed that takes into account the buffering effect of each species on lamprey mortality suffered by others (i.e. should some species not be harvested at all, and viewed instead as buffers for more valuable species?); and (6) a program should be developed for restoring, by culture if necessary, native forage species in case the introduced smelt and alewife should collapse under pressure from fishing and prédation by the growing salmonid community.Key words: sea lamprey, proposed research, fishery management, mathematical models, population dynamics


Sign in / Sign up

Export Citation Format

Share Document