scholarly journals The Total Solar Eclipse of 2017: Meteorological Observations from a Statewide Mesonet and Atmospheric Profiling Systems

2020 ◽  
Vol 101 (6) ◽  
pp. E720-E737
Author(s):  
Rezaul Mahmood ◽  
Megan Schargorodski ◽  
Eric Rappin ◽  
Melissa Griffin ◽  
Patrick Collins ◽  
...  

Abstract A total solar eclipse traversed the continental United States on 21 August 2017. It was the first such event in 99 years and provided a rare opportunity to observe the atmospheric response from a variety of instrumented observational platforms. This paper discusses the high-quality observations collected by the Kentucky Mesonet (www.kymesonet.org), a research-grade meteorological and climatological observation network consisting of 72 stations and measuring air temperature, precipitation, relative humidity, solar radiation, wind speed, and wind direction. The network samples the atmosphere, for most variables, every 3 s and then calculates and records observations every 5 min. During the total solar eclipse, these observations were complemented by observations collected from three atmospheric profiling systems positioned in the path of the eclipse and operated by the University of Alabama in Huntsville (UAH). Observational data demonstrate that solar radiation at the surface dropped from >800 to 0 W m‒2, the air temperature decreased by about 4.5°C, and, most interestingly, a land-breeze–sea-breeze-type wind developed. In addition, due to the high density of observations, the network recorded a detailed representation of the spatial variation of surface meteorology. The UAH profiling system captured collapse and reformation of the planetary boundary layer and related changes during the total solar eclipse.

2007 ◽  
Vol 7 (21) ◽  
pp. 5543-5553 ◽  
Author(s):  
D. Founda ◽  
D. Melas ◽  
S. Lykoudis ◽  
I. Lisaridis ◽  
E. Gerasopoulos ◽  
...  

Abstract. This paper examines the effect of the total solar eclipse of 29 March 2006 on meteorological variables across Greece. Integrated micrometeorological measurements were conducted at Kastelorizo, a small island within the path of totality, and other sites within the Greek domain, with various degrees of solar obscuration. The observations showed a dramatic reduction in the incoming global radiation and subsequent, pronounced changes in surface air temperature with the lowest temperature values occurring about 15 min after the full phase. The amplitude of the air temperature drop was not analogous to the obscuration percentage but was principally determined by the surrounding environment (mainly the sea influence), the background meteorological conditions and local cloudiness. Surface wind-speed decreased in most sites as a result of the cooling and stabilization of the atmospheric boundary layer. This perturbation provided a unique opportunity to apply a sensitivity analysis on the effect of the eclipse to the Weather Research and Forecast (WRF) numerical mesoscale meteorological model. Strong anomalies, not associated with a dynamic response, were simulated over land especially in surface air temperature. The simulated temperature drop pattern was consistent with the observations.


1899 ◽  
Vol 64 (402-411) ◽  
pp. 21-26 ◽  

In the month of August, 1897, I was invited by the Joint Permanenta Eclipse Committee to take part in observing the total solar eclipse which occurred in India on 22nd January of the present year. The preparation of the equipment, which will be described further on, was at once proceeded with, and by the sanction of the Univer­sity authorities and the Secretary for Scotland I was granted the necessary leave of absence from the University and the Royal Observatory.


Author(s):  
Virginia Smith ◽  
Patrick Heelan ◽  
Emily Essex ◽  
Suzanne Weaver Smith

The Kentucky Eclipse Ballooning Project began in early 2015 when students and faculty from The University of Kentucky attended the NASA Marshall Space Flight Center BalloonSat Workshop in Huntsville, Alabama. The students accelerated their preparations after the Eclipse Ballooning Project Workshop hosted in Bozeman, Montana where they built and learned systems designed by Montana Space Grant. In 2016, the students began a sequence of 10 balloon launches in preparation for the total solar eclipse on August 21, 2017. In the early stages of this project, University of Kentucky students set the goal to capture footage of a separate high-altitude weather balloon in front of the solar eclipse, an image dubbed “The Kentucky Money Shot.” After establishing that goal, students began working on approaches and designs to capture this picture with one overarching theme: redundancy. Every aspect of the project from the number of balloons and imaging systems to tracking systems and launch procedures were designed with redundant aspects and through collaboration among the payload, ground station, launch, and mission control teams. The short time window of eclipse totality, 2 minutes 28 seconds, motivated design iterations throughout the progressive practice launches and ground tests including launching two balloons simultaneously, streaming and storing footage of the flight from multiple cameras, and using SPOT Trackers and Iridium systems as multiple tracking approaches. All of these practices and tests led to flying the final redundant designs on August 21st, 2017 to successfully capture “The Kentucky Money Shot”.


Author(s):  
Kaye Smith ◽  
Erick Paul Agrimson ◽  
Brittany Craig ◽  
Alynie Xiong ◽  
Grace Maki ◽  
...  

A thermal wake occurs when a high altitude balloon (HAB) influences and changes the surrounding ambient atmospheric temperature of the air through which it passes. This effect warms the air below the balloon to greater than the ambient temperatures during daytime flights, and cooler than ambient temperatures during nighttime flights. The total solar eclipse of August 21st, 2017, provided us with an opportunity to study these balloon induced temperature transitions from daytime, to eclipsed induced night conditions over the scale of a single flight. To measure these transitions, St. Catherine University and the University of Minnesota, Morris, flew over 40 temperature sensors suspended beneath weather balloons ascending within the path of totality. Stratospheric temperature data collected during the eclipse show evidence of both daytime and nighttime wake temperature profiles.


2021 ◽  
Vol 14 (9) ◽  
pp. 6195-6212
Author(s):  
Chiara Musacchio ◽  
Graziano Coppa ◽  
Gaber Begeš ◽  
Christina Hofstätter-Mohler ◽  
Laura Massano ◽  
...  

Abstract. Solar radiation is one of the main factors which introduce significant deviations between thermometers reading and true air temperature value. Techniques to protect the sensors from direct radiative influence have been adopted almost since the beginning of meteorological observations. Reflected radiation from a snow-covered surface can also cause extra warming to thermometers hosted in solar shields, which are not always optimised to protect the sensors from this further radiative heat transfer. This phenomenon can cause errors in near-surface temperature measurements results, with a relevant impact on the quality of data records and series. This study experimentally evaluates the effect of reflected radiation from a snow-covered surface on the accuracy of air temperature measurements. The investigation is based on the evaluation of temperature differences between pairs of identical instruments, positioned above ground covered by natural vegetation, with one instrument in snow-free conditions and the other above a snow-covered surface, at the same time and at the same site. The work involved a representative number of sensors and shields, in terms of different typologies, technologies and engineering solutions, from different manufacturers. A mountain site with acceptable field conditions, offering long-lasting snow presence to maximise data availability, was selected to perform the experiment. Quantities of influence, such as relative humidity, wind speed and direction and solar radiation (global and reflected), were constantly measured. The main findings of this work show that none of the involved instruments were immune to the extra heating due to the snow-reflected radiation. Excluding nighttimes and days of high wind or low incident radiation, the differences among sensors positioned above natural soil and identical ones exposed to snow albedo ranged up to more than 3 ∘C. Solar screens with forced ventilation showed a partially reduced effect compared to most of the naturally ventilated ones. A full data analysis is reported here, together with complete results and uncertainties.


2008 ◽  
Vol 25 (11) ◽  
pp. 2145-2151 ◽  
Author(s):  
Matthias Mauder ◽  
R. L. Desjardins ◽  
Zhiling Gao ◽  
Ronald van Haarlem

Abstract A spatial network of 25 air temperature sensors was deployed over an area of 3.5 km × 3.5 km of agricultural land, aiming to calculate the sensible heat flux by spatial averaging instead of temporal averaging. Since temperature sensors in naturally ventilated solar radiation shields were used for these measurements, a correction for radiative heating had to be applied. In this study, the approach of Anderson and Baumgartner was adapted to the cube-shaped HOBO solar radiation shields. This semiempirical correction depends on the shield’s area normal to the sun in addition to solar radiation and wind speed. The required correction coefficients, which can be universally applied for this type of shield, were obtained through comparison with fan-aspirated temperature measurements at one site. The root-mean-square error of the HOBO temperature measurements was reduced from 0.49° to 0.15°C after applying this radiation correction.


Sign in / Sign up

Export Citation Format

Share Document