thermal wake
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 0)

Ocean Science ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1285-1302
Author(s):  
Amanda T. Nylund ◽  
Lars Arneborg ◽  
Anders Tengberg ◽  
Ulf Mallast ◽  
Ida-Maja Hassellöv

Abstract. In areas of intensive ship traffic, ships pass every 10 min. Considering the amount of ship traffic and the predicted increase in global maritime trade, there is a need to consider all types of impacts shipping has on the marine environment. While the awareness about, and efforts to reduce, chemical pollution from ships is increasing, less is known about physical disturbances, and ship-induced turbulence has so far been completely neglected. To address the potential importance of ship-induced turbulence on, e.g., gas exchange, dispersion of pollutants, and biogeochemical processes, a characterisation of the temporal and spatial scales of the turbulent wake is needed. Currently, field measurements of turbulent wakes of real-size ships are lacking. This study addresses that gap by using two different methodological approaches: in situ and ex situ observations. For the in situ observations, a bottom-mounted acoustic Doppler current profiler (ADCP) was placed at 32 m depth below the shipping lane outside Gothenburg harbour. Both the acoustic backscatter from the air bubbles in the wake and the dissipation rate of turbulent kinetic energy were used to quantify the turbulent wake depth, intensity, and temporal longevity for 38 ship passages of differently sized ships. The results from the ADCP measurements show median wake depths of 13 m and several occasions of wakes reaching depths > 18 m, which is in the same depth range as the seasonal thermocline in the Baltic Sea. The temporal longevity of the observable part of the wakes had a median of around 10 min and several passages of > 20 min. In the ex situ approach, sea surface temperature was used as a proxy for the water mass affected by the turbulent wake (thermal wake), as lowered temperature in the ship wake indicates vertical mixing in a thermally stratified water column. Satellite images of the thermal infrared sensor (TIRS) onboard Landsat-8 were used to measure thermal wake width and length, in the highly frequented and thus major shipping lane north of Bornholm, Baltic Sea. Automatic information system (AIS) records from both the investigated areas were used to identify the ships inducing the wakes. The satellite analysis showed a median thermal wake length of 13.7 km (n=144), and the longest wake extended over 60 km, which would correspond to a temporal longevity of 1 h 42 min (for a ship speed of 20 kn). The median thermal wake width was 157.5 m. The measurements of the spatial and temporal scales are in line with previous studies, but the maximum turbulent wake depth (30.5 m) is deeper than previously reported. The results from this study, combined with the knowledge of regional high traffic densities, show that ship-induced turbulence occurs at temporal and spatial scales large enough to imply that this process should be considered when estimating environmental impacts from shipping in areas with intense ship traffic.


Author(s):  
Kaye Smith ◽  
Erick Paul Agrimson ◽  
Brittany Craig ◽  
Alynie Xiong ◽  
Grace Maki ◽  
...  

A thermal wake occurs when a high altitude balloon (HAB) influences and changes the surrounding ambient atmospheric temperature of the air through which it passes. This effect warms the air below the balloon to greater than the ambient temperatures during daytime flights, and cooler than ambient temperatures during nighttime flights. The total solar eclipse of August 21st, 2017, provided us with an opportunity to study these balloon induced temperature transitions from daytime, to eclipsed induced night conditions over the scale of a single flight. To measure these transitions, St. Catherine University and the University of Minnesota, Morris, flew over 40 temperature sensors suspended beneath weather balloons ascending within the path of totality. Stratospheric temperature data collected during the eclipse show evidence of both daytime and nighttime wake temperature profiles.


2020 ◽  
Author(s):  
Amanda T. Nylund ◽  
Lars Arneborg ◽  
Anders Tengberg ◽  
Ulf Mallast ◽  
Ida-Maja Hassellöv

Abstract. In areas of intensive ship traffic, ships pass every ten minutes. Considering the amount of ship traffic and the fact that global maritime trade is predicted to increase, there is a need to consider all effects shipping has on the marine environment; both pollution and physical disturbances. This paper studies a previously disregarded physical disturbance, namely ship-induced vertical mixing in the turbulent wake. A characterization of the temporal and spatial scales of the turbulent wake is needed to estimate its effect on gas exchange, dispersion of pollutants, and to identify in which areas ship-induced vertical mixing could have an impact on local biogeochemical cycles. There is a lack of field measurements of turbulent wakes of real-size ships, and this study addresses that gap by in situ and ex situ measurements of the depth, width, length, intensity and longevity of the turbulent wake for ~240 ship passages of differently sized ships. A bottom-mounted Acoustic Doppler Current Profiler (ADCP) was placed at 32 m depth below the ship lane outside Gothenburg harbour, and used to measure wake depth and temporal longevity. Thermal satellite images of the Thermal Infrared Sensor (TIRS) onboard Landsat 8 were used to measure thermal wake width and spatial longevity, using satellite scenes from the major ship lane North of Bornholm, Baltic Sea. Automatic Information System (AIS) records from both the investigated areas were used to identify the ships inducing the wakes. The results from the ADCP measurements show median wake depths of ~ 10 m, and several occasions of wakes reaching depths > 18 m. The temporal longevity of the wakes had a median of around 8 min and several passages of > 20 min. The satellite analysis showed a median thermal wake length of 13.7 km, and the longest wake extended over 60 km, which would correspond to a temporal longevity of 1 h 42 min (for a ship speed of 20 knots). The median thermal wake width was 157.5 m. The measurements of the spatial and temporal scales are in line with previous studies, but the deep mixing and extensive longevity presented in this study, has not previously been documented. The results from this study have shown that ship-induced vertical mixing occurs at temporal and spatial scales large enough to imply that this process should be considered when estimating environmental impact from shipping in areas with intense ship traffic. Moreover, the possibility that deep vertical mixing could occur in a highly frequent manner highlights the need of further studies to better characterize the spatial and temporal development of the turbulent wake.


Author(s):  
Zhilei Wu ◽  
Michael Blatnik ◽  
Eamonn Kress ◽  
Lester Deleon

Abstract In full vehicle thermal flow analyses, the most often used procedure to simulate fluid motions driven by the cooling fan is the Moving Reference Frame (MRF) method. In the MRF approach, the fan is fixed in space and the fan rotation is modeled using grid fluxes. This method is widely used because it provides a fast and effective means of simulating fans. However, the MRF method does not always accurately predict the thermal wake and the mass flow rate through the fan, which causes errors in predicted temperatures on the parts downstream of the fan. Another method for fan simulation is the Rigid Body Motion (RBM) method in which the fan rotates in time. The RBM method models the fan motions directly, thus it can accurately predict the mass flow rate and thermal wake. However, an RBM simulation is transient and needs a time-average to obtain statistically steady-state results. The RBM method requires a significant amount of CPU resources and simulation time, which prevents it from being widely used in industry. In the current work, a Hybrid Rigid Body Motion (HRBM) method is developed and validated. The HRBM method splits the full vehicle thermal simulation into two simulations, and then couples them at the interface. The first simulation is transient, utilizes the RBM method for the fan, and only models the fan regions. The second simulation is steady, which models the full vehicle except the fan regions. The solution from the transient simulation is time-averaged on the exchange interface and used as boundary conditions for the steady simulation. Conversely, the solution for the steady simulation is used as boundary conditions for the transient simulation at the exchange interface. Due to the slight differences resulting from time-averaging, there is a mismatch in the physical quantities at the exchange interface. This causes stability issues which prevent the coupled simulations from converging. Special techniques have been used in this work to stabilize the solution at the interface, which ensured the convergence of the coupled simulations. The HRBM method greatly improves the accuracy of the full vehicle thermal flow simulation compared to using the MRF method. The thermal wake that results from using HRBM to model the fan is very similar to that produced by RBM, but HRBM utilizes ∼20–30% of the simulation resources required by RBM to achieve convergence.


2019 ◽  
Vol 48 (4) ◽  
pp. 404002
Author(s):  
王 平 Wang Ping ◽  
杜永成 Du Yongcheng ◽  
杨 立 Yang Li ◽  
金方圆 Jin Fangyuan

Author(s):  
А.В. Потапкин ◽  
Д.Ю. Москвичев

The level of the sonic boom arising due to local heating of the air flow ahead of a slender body flying at a supersonic velocity in the thermal wake behind the heating regions is calculated. The Mach number of the cold air flow is 2. The calculations are performed by a combined method of “phantom bodies.” It is demonstrated that consecutive local heating of the incident flow in two regions ahead of the body ensures reduction of the sonic boom level by more than 30% as compared to the sonic boom generated by the body in the cold flow.


2018 ◽  
Vol 25 (2) ◽  
pp. 257-264 ◽  
Author(s):  
T. A. Kiseleva ◽  
A. A. Golyshev ◽  
V. I. Yakovlev ◽  
A. M. Orishich

2018 ◽  
Author(s):  
T. A. Kiseleva ◽  
A. A. Golyshev ◽  
V. I. Yakovlev ◽  
A. M. Orishich

Sign in / Sign up

Export Citation Format

Share Document