scholarly journals Surface Pressure a More Skillful Predictor of Normalized Hurricane Damage than Maximum Sustained Wind

2020 ◽  
Vol 101 (6) ◽  
pp. E830-E846 ◽  
Author(s):  
Philip J. Klotzbach ◽  
Michael M. Bell ◽  
Steven G. Bowen ◽  
Ethan J. Gibney ◽  
Kenneth R. Knapp ◽  
...  

Abstract Atlantic hurricane seasons have a long history of causing significant financial impacts, with Harvey, Irma, Maria, Florence, and Michael combining to incur more than 345 billion USD in direct economic damage during 2017–2018. While Michael’s damage was primarily wind and storm surge-driven, Florence’s and Harvey’s damage was predominantly rainfall and inland flood-driven. Several revised scales have been proposed to replace the Saffir–Simpson Hurricane Wind Scale (SSHWS), which currently only categorizes the hurricane wind threat, while not explicitly handling the totality of storm impacts including storm surge and rainfall. However, most of these newly-proposed scales are not easily calculated in real-time, nor can they be reliably calculated historically. In particular, they depend on storm wind radii, which remain very uncertain. Herein, we analyze the relationship between normalized historical damage caused by continental United States (CONUS) landfalling hurricanes from 1900–2018 with both maximum sustained wind speed (Vmax) and minimum sea level pressure (MSLP). We show that MSLP is a more skillful predictor of normalized damage than Vmax, with a significantly higher rank correlation between normalized damage and MSLP (rrank = 0.77) than between normalized damage and Vmax (rrank = 0.66) for all CONUS landfalling hurricanes. MSLP has served as a much better predictor of hurricane damage in recent years than Vmax, with large hurricanes such as Ike (2008) and Sandy (2012) causing much more damage than anticipated from their SSHWS ranking. MSLP is also a more accurately-measured quantity than is Vmax, making it an ideal quantity for evaluating a hurricane’s potential damage.

Author(s):  
Thomas Patrick Leahy

Abstract. Hurricanes are destructive forces of nature that have the ability to cause vast devastation both economically and socially. Estimating the potential damage caused by hurricanes aids local, state and federal governments as well as insurance and reinsurance companies to plan for future hurricanes. Direct damages caused by hurricanes are difficult to estimate. There are multiple factors that could contribute to the damages caused by a hurricane. Wind is typically considered the most important factor to account for when estimating potential damage. Aside from the complex physical processes, the difficultly in estimating hurricane damages is further compounded by limited data and a changing climate. Fitting models with limited data presents a series of challenges. These challenges include outliers that could form a large proportion of the data, overfitting, missing data and it becomes difficult to leave out a portion of the data for external validation. This study found a significant positive correlation using the Kendall rank correlation coefficient between hurricane damages, measured by the area of total destruction and the maximum landfalling wind speed (τ = 0.451). A copula-based approach was used to model their dependency. Both bivariate Archimedean and elliptical copulae families were assessed as potential models. A bivariate Frank copula with Weibull marginals was found to be the most appropriate fitting model based on a visual inspection of the contour plots of the fitted copulae. Simulation from the fitted copula was qualitatively similar to observation. This study demonstrated a potential method to overcome the limitation of small data facing models to estimate hurricane damages.


2008 ◽  
Vol 136 (3) ◽  
pp. 833-864 ◽  
Author(s):  
Joannes J. Westerink ◽  
Richard A. Luettich ◽  
Jesse C. Feyen ◽  
John H. Atkinson ◽  
Clint Dawson ◽  
...  

Abstract Southern Louisiana is characterized by low-lying topography and an extensive network of sounds, bays, marshes, lakes, rivers, and inlets that permit widespread inundation during hurricanes. A basin- to channel-scale implementation of the Advanced Circulation (ADCIRC) unstructured grid hydrodynamic model has been developed that accurately simulates hurricane storm surge, tides, and river flow in this complex region. This is accomplished by defining a domain and computational resolution appropriate for the relevant processes, specifying realistic boundary conditions, and implementing accurate, robust, and highly parallel unstructured grid numerical algorithms. The model domain incorporates the western North Atlantic, the Gulf of Mexico, and the Caribbean Sea so that interactions between basins and the shelf are explicitly modeled and the boundary condition specification of tidal and hurricane processes can be readily defined at the deep water open boundary. The unstructured grid enables highly refined resolution of the complex overland region for modeling localized scales of flow while minimizing computational cost. Kinematic data assimilative or validated dynamic-modeled wind fields provide the hurricane wind and pressure field forcing. Wind fields are modified to incorporate directional boundary layer changes due to overland increases in surface roughness, reduction in effective land roughness due to inundation, and sheltering due to forested canopies. Validation of the model is achieved through hindcasts of Hurricanes Betsy and Andrew. A model skill assessment indicates that the computed peak storm surge height has a mean absolute error of 0.30 m.


2016 ◽  
Vol 16 (9) ◽  
pp. 2031-2041 ◽  
Author(s):  
Theofilos Toulkeridis ◽  
Fabián Rodríguez ◽  
Nelson Arias Jiménez ◽  
Débora Simón Baile ◽  
Rodolfo Salazar Martínez ◽  
...  

Abstract. The so-called El Trébol is a critical road interchange in Quito connecting the north and south regions of the city. In addition, it connects Quito with the highly populated Los Chillos Valley, one of the most traveled zones in the Ecuadorian capital. El Trébol was constructed in the late 1960s in order to resolve the traffic jams of the capital city and for that purpose the Machángara River was rerouted through an underground concrete box tunnel. In March 2008, the tunnel contained a high amount of discarded furniture that had been impacting the top portion of the tunnel, compromising the structural integrity. On 31 March 2008 after a heavy rainfall a sinkhole of great proportions formed in the Trébol traffic hub. In the first few minutes, the sinkhole reached an initial diameter of 30 m. The collapse continued to grow in the following days until the final dimensions of 120 m in diameter and some 40 m of depth, revealing the Machángara River at the base of the sinkhole.A state of emergency was declared. The cause of the sinkhole was a result of the lack of monitoring of the older subterranean infrastructure where trash had accumulated and damaged the concrete tunnel that channelized the Machángara River until it was worn away for a length of some 20 m, leaving behind the sinkhole and the fear of recurrence in populated areas.With the intent to understand the causes and consequences of this sinkhole event, rainfall data are shown together with hydrogeological characteristics and a view back to the recent history of sinkhole lineation or arrangement of the city of Quito. The economic impact is also emphasized, where the direct costs of the damage and the reconstruction are presented and compared to indirect costs associated with this socio-natural disaster. These analyses suggest that the costs of indirect financial damage, like time loss or delay, and subsequent higher expenses for different types of vehicles, are equivalent to many times the costs of the reconstruction of El Trébol.


Eos ◽  
2014 ◽  
Vol 95 (43) ◽  
pp. 396-396
Author(s):  
Colin Schultz
Keyword(s):  

2010 ◽  
Vol 11 (1) ◽  
pp. 33 ◽  
Author(s):  
James M. Crosslin ◽  
Joseph E. Munyaneza ◽  
Judith K. Brown ◽  
Lia W. Liefting

Potato zebra chip (ZC) disease is a relative newcomer to the world of important potato diseases. First reported in Mexico in the 1990s, by 2004-2005 the disease was causing serious economic damage in parts of Texas. ZC is now widespread in the south-western and central United States, Mexico, Central America, and was recently reported in New Zealand. By 2006, there seemed to be an association between ZC and the potato psyllid (Bactericera cockerelli). The exact nature of the relationship, however, has only recently been identified by the discovery of a new Candidatus Liberibacter bacterium that is transmitted to potatoes, tomatoes, and other solanaceous hosts by the potato psyllid. This review examines the history of this disease, the association of ZC with the potato psyllid, the host range, and recent research into the bacterial pathogen. Accepted for publication 15 December 2009. Published 17 March 2010.


2011 ◽  
Vol 36 (1-2) ◽  
pp. 71-79 ◽  
Author(s):  
Lian Xie ◽  
Huiqing Liu ◽  
Bin Liu ◽  
Shaowu Bao

2021 ◽  
Vol 9 (9) ◽  
pp. 963
Author(s):  
Abram Musinguzi ◽  
Madinah Shamsu ◽  
Muhammad K. Akbar ◽  
Jason G. Fleming

In this study, it is demonstrated that hurricane wind intensity, forward speed, pressure, and track play an important role on the generation and propagation of coastal storm surges. Hurricane Irma, which heavily impacted the entire Florida peninsula in 2017, is used to study the storm surge sensitivity to varying storm characteristics. Results show that the west coast experiences a negative surge due to offshore wind of the approaching storm, but the positive surge returns after the hurricane eye passes over a location and wind became onshore. In the west coast peak, surges are intensified by an increase in onshore wind intensity and forward speed. In the Florida Keys, peak surges are intensified by an increase in wind intensity, a decrease in forward speed and a decrease in pressure. In southeast and east Florida, peak surges are intensified by decrease in pressure, although overall surges are less significant as the water can slide along the coastline. In the recessed coastline of Georgia-Carolinas, maximum surge is elevated by an increase in onshore wind intensity. Shifting the track westward increases peak surges on the west coast, while shifting the track eastward increases peak surge on the east coast. The results demonstrate a new understanding about the sensitivity of surge to varying parametric conditions and the importance of considering changes in the coastline orientation in storm surge predictions.


2016 ◽  
Vol 6 (2) ◽  
pp. 141-149 ◽  
Author(s):  
David Moncoulon ◽  
Martine Veysseire ◽  
Jean-Philippe Naulin ◽  
Zi-Xiang Wang ◽  
Pierre Tinard ◽  
...  

2021 ◽  
Vol 6 ◽  
Author(s):  
Pramodit Adhikari ◽  
Mohamed A. Abdelhafez ◽  
Yue Dong ◽  
Yanlin Guo ◽  
Hussam N. Mahmoud ◽  
...  

Coastal cities in the Southeast and Gulf Coast of the United States are at an increased risk of tropical cyclones (hurricanes) due to the combined effects of urbanization, rapid economic development, and climate change. Current building codes and standards focus on minimum performance criteria for individual buildings exposed to severe hazard events to ensure occupant safety. However, they do not consider the resilience of buildings and building portfolios, which are key factors in determining whether a community can respond to and recover from a severe natural hazard event. Light-frame wood residential buildings dominate the residential market in the US, represent a significant percentage of the investment in the built environment, and are especially vulnerable to hurricane winds and storm surge in coastal areas. Our study of the impact of various hurricane and climate change scenarios on the performance of coastal residential communities reveals that decision-making at the community level is needed to develop rational engineering and urban planning policies, to mitigate the impact of hurricane wind and storm surge, and to adapt to climate change. The results suggest that fundamental changes in the current building regulatory process may be necessary.


2016 ◽  
Author(s):  
Theofilos Toulkeridis ◽  
Fabián Rodríguez ◽  
Nelson Arias Jiménez ◽  
Débora Simón Baile ◽  
Rodolfo Salazar Martínez ◽  
...  

Abstract. The so-called "El Trébol" is a critical road interchange in Quito connecting the north and south regions of the city. In addition, it connects Quito with the highly populated "Los Chillos" valley, one of the most traveled zones in the Ecuadorian capital. El Trébol was constructed in the late sixties in order to resolve the traffic jams of the capital city and for that purpose the Machángara river was rerouted through a concrete box tunnel. In March 2008, the tunnel contained a high amount of trash furniture that had been impacting the top portion of the tunnel, compromising the structural integrity. On the 31st of March 2008 after a heavy rainfall a sinkhole of great proportions was formed in the Trébol traffic hub. In the first few minutes, with an initial diameter of 30 meters. The collapse continued to grow in the following days until the final dimensions of 120 meters in diameter and some 40 meters of depth, revealing the Machángara river at the base of the sinkhole. A state of emergency was declared, the cause of the sinkhole was a result of the lack of monitoring of the older subterranean infrastructure where trash had accumulated and damaged the concrete tunnel that channelized the Machángara river until it was worn away for a length of some 20 meters, leaving behind the sinkhole and the fear of recurrence in populated areas. In an intend to understand the causes and consequences of this sinkhole event, rainfall data are shown together with hydrogeological characteristics and a view back to the recent history of sinkhole lineation or arrangement of the city of Quito. The economic impact is also emphasized, where the direct costs of the damage and the reconstruction are presented and compared to indirect costs associated with this socio-natural disaster. These analyses suggest that the costs of indirect financial damage, like time loss or delay, and subsequent higher expenses for different types of of vehicles, are equivalent to many times the costs of the reconstruction of El Trébol.


Sign in / Sign up

Export Citation Format

Share Document