scholarly journals Quantification of the Small-Scale Spatial Structure of the Raindrop Size Distribution from a Network of Disdrometers

2012 ◽  
Vol 51 (5) ◽  
pp. 941-953 ◽  
Author(s):  
Joël Jaffrain ◽  
Alexis Berne

AbstractThe spatial structure of the raindrop size distribution (DSD) conveys crucial information for reliable quantitative estimation of rainfall using remote sensing techniques. To investigate this question, a network of 16 optical disdrometers has been deployed over a typical weather radar pixel (~1 × 1 km2) in Lausanne, Switzerland. A set of 36 rainfall events has been classified according to three types: convective, transitional, and frontal. In a first step, the spatial structure of the DSD is quantified using spatial correlation for comparison with the literature, showing good agreement with previous studies. The spatial structure of important quantities related to the DSD—namely, the total concentration of drops Nt, the mass-weighted diameter Dm, and the rain rate R—is quantified using variograms. Results clearly highlight that DSD fields are organized and not randomly distributed even at a scale below 1 km. Moreover, convective-type rainfall exhibits larger variability of the DSD than do transitional and frontal rainfall. The temporal resolution is shown to have an influence on the results: increasing time steps tend to decrease the spatial variability. This study presents a possible application of such information by quantifying the error associated with the use of point measurements as areal estimates at larger scales. Analyses have been conducted for different sizes of domain ranging from 100 × 100 to 1000 × 1000 m2. As expected, this error is increasing with the size of the domain. For instance, for a domain of ~1000 × 1000 m2, the error associated with rain-rate estimates is on the order of 25% for all types of rain.

2014 ◽  
Vol 53 (6) ◽  
pp. 1618-1635 ◽  
Author(s):  
Elisa Adirosi ◽  
Eugenio Gorgucci ◽  
Luca Baldini ◽  
Ali Tokay

AbstractTo date, one of the most widely used parametric forms for modeling raindrop size distribution (DSD) is the three-parameter gamma. The aim of this paper is to analyze the error of assuming such parametric form to model the natural DSDs. To achieve this goal, a methodology is set up to compare the rain rate obtained from a disdrometer-measured drop size distribution with the rain rate of a gamma drop size distribution that produces the same triplets of dual-polarization radar measurements, namely reflectivity factor, differential reflectivity, and specific differential phase shift. In such a way, any differences between the values of the two rain rates will provide information about how well the gamma distribution fits the measured precipitation. The difference between rain rates is analyzed in terms of normalized standard error and normalized bias using different radar frequencies, drop shape–size relations, and disdrometer integration time. The study is performed using four datasets of DSDs collected by two-dimensional video disdrometers deployed in Huntsville (Alabama) and in three different prelaunch campaigns of the NASA–Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) ground validation program including the Hydrological Cycle in Mediterranean Experiment (HyMeX) special observation period (SOP) 1 field campaign in Rome. The results show that differences in rain rates of the disdrometer DSD and the gamma DSD determining the same dual-polarization radar measurements exist and exceed those related to the methodology itself and to the disdrometer sampling error, supporting the finding that there is an error associated with the gamma DSD assumption.


2012 ◽  
Vol 51 (4) ◽  
pp. 780-785 ◽  
Author(s):  
Joël Jaffrain ◽  
Alexis Berne

AbstractThis work aims at quantifying the variability of the parameters of the power laws used for rain-rate estimation from radar data, on the basis of raindrop size distribution measurements over a typical weather radar pixel. Power laws between the rain rate and the reflectivity or the specific differential phase shift are fitted to the measured values, and the variability of the parameters is analyzed. At the point scale, the variability within this radar pixel cannot be solely explained by the sampling uncertainty associated with disdrometer measurements. When parameters derived from point measurements are applied at the radar pixel scale, the resulting error in the rain amount varies between −2% and +15%.


2016 ◽  
Vol 17 (7) ◽  
pp. 2077-2104 ◽  
Author(s):  
Timothy H. Raupach ◽  
Alexis Berne

Abstract The drop size distribution (DSD) describes the microstructure of liquid precipitation. The high variability of the DSD reflects the variety of microphysical processes controlling raindrop properties and affects the retrieval of rainfall. An analysis of the effects of DSD subgrid variability on areal estimation of precipitation is presented. Data used were recorded with a network of disdrometers in Ardèche, France. DSD variability was studied over two typical scales: 5 km × 5 km, similar to the ground footprint size of the Global Precipitation Measurement (GPM) spaceborne weather radar, and 2.8 km × 2.8 km, an operational pixel size of the Consortium for Small-Scale Modeling (COSMO) numerical weather model. Stochastic simulation was used to generate high-resolution grids of DSD estimates over the regions of interest, constrained by experimental DSDs measured by disdrometers. From these grids, areal DSD estimates were derived. The error introduced by assuming a point measurement to be representative of the areal DSD was quantitatively characterized and was shown to increase with the size of the considered area and with drop size and to decrease with the integration time. The controlled framework allowed for the accuracy of retrieval algorithms to be investigated. Rainfall variables derived by idealized simulations of GPM- and COSMO-style algorithms were compared to subgrid distributions of the same variables. While rain rate and radar reflectivity were well represented, the estimated drop concentration and mass-weighted mean drop diameter were often less representative of subgrid values.


2001 ◽  
Vol 5 (4) ◽  
pp. 615-628 ◽  
Author(s):  
R. Uijlenhoet

Abstract. The conversion of the radar reflectivity factor Z(mm6m-3) to rain rate R(mm h-1 ) is a crucial step in the hydrological application of weather radar measurements. It has been common practice for over 50 years now to take for this conversion a simple power law relationship between Z and R. It is the purpose of this paper to explain that the fundamental reason for the existence of such power law relationships is the fact that Z and R are related to each other via the raindrop size distribution. To this end, the concept of the raindrop size distribution is first explained. Then, it is demonstrated that there exist two fundamentally different forms of the raindrop size distribution, one corresponding to raindrops present in a volume of air and another corresponding to those arriving at a surface. It is explained how Z and R are defined in terms of both these forms. Using the classical exponential raindrop size distribution as an example, it is demonstrated (1) that the definitions of Z and R naturally lead to power law Z–R relationships, and (2) how the coefficients of such relationships are related to the parameters of the raindrop size distribution. Numerous empirical Z–R relationships are analysed to demonstrate that there exist systematic differences in the coefficients of these relationships and the corresponding parameters of the (exponential) raindrop size distribution between different types of rainfall. Finally, six consistent Z–R relationships are derived, based upon different assumptions regarding the rain rate dependence of the parameters of the (exponential) raindrop size distribution. An appendix shows that these relationships are in fact special cases of a general Z–R relationship that follows from a recently proposed scaling framework for describing raindrop size distributions and their properties. Keywords: radar hydrology, raindrop size distribution, radar reflectivity–rain rate relationship


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 562
Author(s):  
Yingjue Wang ◽  
Jiafeng Zheng ◽  
Zhigang Cheng ◽  
Bingyun Wang

Precipitation microphysics over the Tibetan Plateau (TP) remain insufficiently understood, due to the lack of observations and studies. This paper presents a comprehensive investigation of the raindrop size distribution (DSD) for rainfall that happened on the eastern slope of TP in summer. DSD differences between different rain types and under different rain rates are investigated. Confidential empirical relationships between the gamma shape and slope parameters, and between reflectivity and rain rate are proposed. DSD properties in this area are also compared with those in other areas. The results indicate that the stratiform and convective rains contribute to different rain duration and amount, with diverse rainfall macro- and microphysical properties. The rain spectra of two rain types can become broader with higher concentrations as the rain rate increases. DSDs in this area are different to those in other areas. The stratiform DSD is narrower than that in the non-plateau area. The two rain types of this area both have higher number concentrations for 0.437–1.625 mm raindrops than those of the mid-TP. The relationships of shape–slope parameters and reflectivity–rain rate in this area are also different from those in other areas. The rain spectra in this area can produce a larger slope parameter under the same shape parameter than in the mid-TP. The convective rain can produce a smaller rain rate under the same reflectivity. The accuracy proposed reflectivity–rain rate relationship in application to quantitative rainfall estimation is also discussed. The results show that the relationship has an excellent performance when the rain rate exceeds 1 mm h−1.


2012 ◽  
Vol 51 (11) ◽  
pp. 1960-1970 ◽  
Author(s):  
Ricardo Sarmento Tenório ◽  
Marcia Cristina da Silva Moraes ◽  
Henri Sauvageot

AbstractA dataset on raindrop size distribution (DSD) gathered in a coastal site of the Alagoas state in northeastern Brazil is used to analyze some differences between continental and maritime rainfall parameters. The dataset is divided into two subsets. One is composed of rainfall systems coming from the continent and moving eastward (i.e., offshore), representing the continental subset. The other is composed of rainfall systems that developed over the sea and are moving westward (i.e., inshore), representing the maritime subset. The mean conditional rain rate (i.e., for rain rate R > 0) is found to be higher for maritime (4.6 mm h−1) than for continental (3.2 mm h−1) conditions. The coefficient of variation of the conditional rain rate is lower for the maritime (1.75) than for the continental (2.25) subset. The continental and maritime DSDs display significant differences. For drop diameter D smaller than about 2 mm, the number of drops is higher for maritime rain than for continental rain. This reverses for D > 2 mm, in such a way that radar reflectivity factor Z for the maritime case is lower than for the continental case at the same rain rate. These results show that, to estimate precipitation by radar in the coastal area of northeastern Brazil, coefficients of the Z–R relation need to be adapted to the direction of motion of the rain-bearing system, inshore or offshore.


2019 ◽  
Vol 23 (10) ◽  
pp. 4153-4170 ◽  
Author(s):  
Yu Ma ◽  
Guangheng Ni ◽  
Chandrasekar V. Chandra ◽  
Fuqiang Tian ◽  
Haonan Chen

Abstract. Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation, especially in complex terrain or urban environments which are known for complicated rainfall mechanism and high spatial and temporal variability. In this study, the DSD characteristics of rainy seasons in the Beijing urban area are extensively investigated using 5-year DSD observations from a Parsivel2 disdrometer located at Tsinghua University. The results show that the DSD samples with rain rate < 1 mm h−1 account for more than half of total observations. The mean values of the normalized intercept parameter (log 10Nw) and the mass-weighted mean diameter (Dm) of convective rain are higher than that of stratiform rain, and there is a clear boundary between the two types of rain in terms of the scattergram of log 10Nw versus Dm. The convective rain in Beijing is neither continental nor maritime, owing to the particular location and local topography. As the rainfall intensity increases, the DSD spectra become higher and wider, but they still have peaks around diameter D∼0.5 mm. The midsize drops contribute most towards accumulated rainwater. The Dm and log 10Nw values exhibit a diurnal cycle and an annual cycle. In addition, at the stage characterized by an abrupt rise of urban heat island (UHI) intensity as well as the stage of strong UHI intensity during the day, DSD shows higher Dm values and lower log 10Nw values. The localized radar reflectivity (Z) and rain rate (R) relations (Z=aRb) show substantial differences compared to the commonly used NEXRAD relationships, and the polarimetric radar algorithms R(Kdp), R(Kdp, ZDR), and R(ZH, ZDR) show greater potential for rainfall estimation.


2015 ◽  
Vol 32 (6) ◽  
pp. 1191-1208 ◽  
Author(s):  
Christine Unal

AbstractDoppler spectra from vertically profiling radars are usually considered to retrieve the raindrop size distribution (DSD). However, to exploit both fall velocity spectrum and polarimetric measurements, Doppler spectra acquired in slant profiling mode should be explored. Rain DSD samples are obtained from simultaneously measured vertical and slant profile Doppler spectra and evaluated. In particular, the effect of the horizontal wind and the averaging time are investigated.The Doppler spectrum provides a way to retrieve the DSD, the radial wind, and a spectral broadening factor by means of a nonlinear optimization technique. For slant profiling of light rain when the horizontal wind is strong, the DSD results can be affected. Such an effect is demonstrated on a study case of stratiform light rain. Adding a wind profiler mode to the radar simultaneously supplies the horizontal wind and Doppler spectra. Before the retrieval procedure, the Doppler spectra are shifted in velocity to remove the mean horizontal wind contribution. The DSD results are considerably improved.Generally, averaged Doppler spectra are input into this type of algorithm. Instead, high-resolution, low-averaged Doppler spectra are chosen in order to take into account the small-scale variability of the rainfall. Investigating the linear relations at fixed median volume diameter, measured reflectivity-retrieved rainfall rate, for a slant beam, the consistency of the integrated parameters is established for two averaging periods. Nevertheless, the corresponding DSD parameter distributions reveal differences attributed to the averaging of the Doppler spectra.The new aspects are to obtain the same retrieval quality as vertically profiling and highly averaged spectra in an automated way.


Sign in / Sign up

Export Citation Format

Share Document