scholarly journals Comparison of PARASOL Observations with Polarized Reflectances Simulated Using Different Ice Habit Mixtures

2013 ◽  
Vol 52 (1) ◽  
pp. 186-196 ◽  
Author(s):  
Benjamin H. Cole ◽  
Ping Yang ◽  
Bryan A. Baum ◽  
Jerome Riedi ◽  
Laurent C.-Labonnote ◽  
...  

AbstractInsufficient knowledge of the habit distribution and the degree of surface roughness of ice crystals within ice clouds is a source of uncertainty in the forward light scattering and radiative transfer simulations of ice clouds used in downstream applications. The Moderate Resolution Imaging Spectroradiometer (MODIS) collection-5 ice microphysical model presumes a mixture of various ice crystal shapes with smooth facets, except for the compact aggregate of columns for which a severely rough condition is assumed. When compared with Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) polarized reflection data, simulations of polarized reflectance using smooth particles show a poor fit to the measurements, whereas very rough-faceted particles provide an improved fit to the polarized reflectance. In this study a new microphysical model based on a mixture of nine different ice crystal habits with severely roughened facets is developed. Simulated polarized reflectance using the new ice habit distribution is calculated using a vector adding–doubling radiative transfer model, and the simulations closely agree with the polarized reflectance observed by PARASOL. The new general habit mixture is also tested using a spherical albedo differences analysis, and surface roughening is found to improve the consistency of multiangular observations. These results are consistent with previous studies that have used polarized reflection data. It is suggested that an ice model incorporating an ensemble of different habits with severely roughened surfaces would potentially be an adequate choice for global ice cloud retrievals.

Author(s):  
K. H. Lee ◽  
K. T. Lee

The paper presents currently developing method of volcanic ash detection and retrieval for the Geostationary Korea Multi-Purpose Satellite (GK-2A). With the launch of GK-2A, aerosol remote sensing including dust, smoke, will begin a new era of geostationary remote sensing. The Advanced Meteorological Imager (AMI) onboard GK-2A will offer capabilities for volcanic ash remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. Based on the physical principles for the current polar and geostationary imagers are modified in the algorithm. Volcanic ash is estimated in detection processing from visible and infrared channel radiances, and the comparison of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every 15 min for volcanic ash for pixel sizes of 2 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously, both over water and land. The algorithm has been tested with proxy data generated from existing satellite observations and forward radiative transfer simulations. Operational assessment of the algorithm will be made after the launch of GK-2A scheduled in 2018.


2020 ◽  
Author(s):  
Huan Yu ◽  
Arve Kylling ◽  
Claudia Emde ◽  
Bernhard Mayer ◽  
Kerstin Stebel ◽  
...  

<p>Operational retrievals of tropospheric trace gases from space-borne spectrometers are made using 1D radiative transfer models. To minimize cloud effects generally only partially cloudy pixels are analysed using simplified cloud contamination treatments based on radiometric cloud fraction estimates and photon path length corrections based on oxygen collision pair (O<sub>2</sub>-O<sub>2</sub>) or O<sub>2</sub>A-absorption band measurements. In reality, however, the impact of clouds can be much more complex, involving scattering of clouds in neighbouring pixels and cloud shadow effects. Therefore, to go one step further, other correction methods may be envisaged that use sub-pixel cloud information from co-located imagers. Such methods require an understanding of the impact of clouds on the real 3D radiative transfer. We quantify this impact using the MYSTIC 3D radiative transfer model. The generation of realistic 3D input cloud fields, needed by MYSTIC (or any other 3D radiative transfer model), is non-trivial. We use cloud data generated by the ICOsahedral Non-hydrostatic (ICON) atmosphere model for a region including Germany, the Netherlands and parts of other surrounding countries. The model simulates realistic liquid and ice clouds with a horizontal spatial resolution of 156 m and it has been validated against ground-based and satellite-based observational data.</p><p>As a trace gas example, we study NO<sub>2</sub>, a key tropospheric trace gas measured by the atmospheric Sentinels. The MYSTIC 3D model simulates visible spectra, which are ingested in standard DOAS retrieval algorithms to retrieve the NO<sub>2</sub> column amount. Spectra are simulated for a number of realistic cloud scenarios, snow free surface albedos, and solar and satellite geometries typical of low-earth and geostationary orbits. The retrieved NO<sub>2</sub> vertical column densities (VCD) are compared with the true values to identify conditions where 3D cloud effects lead to significant biases on the NO<sub>2</sub> VCDs. A variety of possible mitigation strategies for such pixels are then explored.</p>


2007 ◽  
Vol 20 (17) ◽  
pp. 4459-4475 ◽  
Author(s):  
C. J. Stubenrauch ◽  
F. Eddounia ◽  
J. M. Edwards ◽  
A. Macke

Abstract Combined simultaneous satellite observations are used to evaluate the performance of parameterizations of the microphysical and optical properties of cirrus clouds used for radiative flux computations in climate models. Atmospheric and cirrus properties retrieved from Television and Infrared Observation Satellite (TIROS-N) Operational Vertical Sounder (TOVS) observations are given as input to the radiative transfer model developed for the Met Office climate model to simulate radiative fluxes at the top of the atmosphere (TOA). Simulated cirrus shortwave (SW) albedos are then compared to those retrieved from collocated Scanner for Radiation Budget (ScaRaB) observations. For the retrieval, special care has been given to angular direction models. Three parameterizations of cirrus ice crystal optical properties are represented in the Met Office radiative transfer model. These parameterizations are based on different physical approximations and different hypotheses on crystal habit. One parameterization assumes pristine ice crystals and two ice crystal aggregates. By relating the cirrus ice water path (IWP) retrieved from the effective infrared emissivity to the cirrus SW albedo, differences between the parameterizations are amplified. This study shows that pristine crystals seem to be plausible only for cirrus with IWP less than 30 g m−2. For larger IWP, ice crystal aggregates lead to cirrus SW albedos in better agreement with the observations. The data also indicate that climate models should allow the cirrus effective ice crystal diameter (De) to increase with IWP, especially in the range up to 30 g m−2. For cirrus with IWP less than 20 g m−2, this would lead to SW albedos that are about 0.02 higher than the ones of a constant De of 55 μm.


2013 ◽  
Vol 13 (7) ◽  
pp. 18713-18748
Author(s):  
S. A. Christopher

Abstract. The primary focus of this paper is to simulate visible and near-infrared reflectances of the GOES-R Advanced Baseline Imager (ABI) for cases of high aerosol loading containing regional haze and smoke over the eastern United States. The simulations are performed using the Weather Research and Forecasting (WRF), Sparse Matrix Operator Kernel Emissions (SMOKE), and Community Multiscale Air Quality (CMAQ) models. Geostationary satellite-derived biomass burning emissions are also included as an input to CMAQ. Using the CMAQ aerosol concentrations and Mie calculations, radiance is computed from the discrete ordinate atmospheric radiative transfer model. We present detailed methods for deriving aerosol extinction from WRF and CMAQ outputs. Our results show that the model simulations create a realistic set of reflectance in various aerosol scenarios. The simulated reflectance provides distinct spectral features of aerosols which is then compared to data from the Moderate Resolution Imaging Spectroradiometer (MODIS). We also present a simple technique to synthesize green band reflectance (which will not be available on the ABI), using the model-simulated blue and red band reflectance. This study is an example of the use of air quality modeling in improving products and techniques for Earth observing missions.


2010 ◽  
Vol 10 (5) ◽  
pp. 12629-12664 ◽  
Author(s):  
S.-H. Ham ◽  
B. J. Sohn

Abstract. To examine the calibration performance of the Meteosat-8/9 Spinning Enhanced Visible Infra-Red Imager (SEVIRI) 0.640-μm and the Multi-functional Transport Satellite (MTSAT)-1R 0.724-μm channels, three calibration methods were employed. First, a ray-matching technique was used to compare Meteosat-8/9 and MTSAT-1R visible channel reflectances with the well-calibrated Moderate Resolution Imaging Spectroradiometer (MODIS) 0.646-μm channel reflectances. Spectral differences of the response function between the two channels of interest were taken into account for the comparison. Second, collocated MODIS cloud products were used as inputs to a radiative transfer model to calculate Meteosat-8/9 and MTSAT-1R visible channel reflectances. In the simulation, the three-dimensional radiative effect of clouds was taken into account and was subtracted from the simulated reflectance to remove the simulation bias caused by the plane-parallel assumption. Third, an independent method used the typical optical properties of deep convective clouds (DCCs) to simulate reflectances of selected DCC targets. Although the three methods were not in perfect agreement, the results suggest that calibration accuracies were within 5–10% for the Meteosat-8 0.640-μm channel, 4–9% for the Meteosat-9 0.640-μm channel, and up to 20% for the MTSAT-1R 0.724-μm channel. The results further suggest that the solar channel calibration scheme combining the three methods in this paper can be used as a tool to monitor the calibration performance of visible sensors that are particularly not equipped with an onboard calibration system.


2021 ◽  
Author(s):  
Babak Jahani ◽  
Hendrik Andersen ◽  
Josep Calbó ◽  
Josep-Abel González ◽  
Jan Cermak

Abstract. This study presents an approach for quantification of cloud-aerosol transition zone broadband longwave radiative effects at the top of the atmosphere (TOA) during daytime over the ocean, based on satellite observations and radiative transfer simulation. Specifically, we used several products from MODIS (Moderate Resolution Imaging Spectroradiometer) and CERES (Clouds and the Earth’s Radiant Energy System) sensors for identification and selection of CERES footprints with horizontally homogeneous transition zone and clear-sky conditions. For the selected transition zone footprints, radiative effect was calculated as the difference between the instantaneous CERES TOA upwelling broadband longwave radiance observations and corresponding clear-sky radiance simulations. The clear-sky radiances were simulated using the Santa Barbara DISORT Atmospheric Radiative Transfer model fed by the hourly ERA5 reanalysis (fifth generation ECMWF reanalysis) atmospheric and surface data. The CERES radiance observations corresponding to the clear-sky footprints detected were also used for validating the simulated clear-sky radiances. We tested this approach using the radiative measurements made by the MODIS and CERES instruments onboard Aqua platform over the south-eastern Atlantic Ocean during August 2010. For the studied period and domain, transition zone radiative effect (given in flux units) is on average equal to 8.0 ± 3.7 W m−2 (heating effect; median: 5.4 W m−2), although cases with radiative effects as large as 50 W m−2 were found.


2013 ◽  
Vol 52 (4) ◽  
pp. 872-888 ◽  
Author(s):  
Shouguo Ding ◽  
Ping Yang ◽  
Bryan A. Baum ◽  
Andrew Heidinger ◽  
Thomas Greenwald

AbstractThis paper describes the development of an ice cloud radiance simulator for the anticipated Geostationary Operational Environmental Satellite R (GOES-R) Advanced Baseline Imager (ABI) solar channels. The simulator is based on the discrete ordinates radiative transfer (DISORT) model. A set of correlated k-distribution (CKD) models is developed for the ABI solar channels to account for atmospheric trace gas absorption. The CKD models are based on the ABI spectral response functions and also consider when multiple gases have overlapping absorption. The related errors of the transmittance profile are estimated on the basis of the exact line-by-line results, and it is found that errors in transmittance are less than 0.2% for all but one of the ABI solar channels. The exception is for the 1.378-μm channel, centered near a strong water vapor absorption band, for which the errors are less than 2%. For ice clouds, the band-averaged bulk-scattering properties for each ABI [and corresponding Moderate Resolution Imaging Spectroradiometer (MODIS)] solar channel are derived using an updated single-scattering property database of both smooth and severely roughened ice particles, which include droxtals, hexagonal plates, hexagonal hollow and solid columns, three-dimensional hollow and solid bullet rosettes, and several types of aggregates. The comparison shows close agreement between the radiance simulator and the benchmark model, the line-by-line radiative transfer model (LBLRTM)+DISORT model. The radiances of the ABI and corresponding MODIS measurements are compared. The results show that the radiance differences between the ABI and MODIS channels under ice cloud conditions are likely due to the different band-averaged imaginary indices of refraction.


2009 ◽  
Vol 66 (12) ◽  
pp. 3721-3731 ◽  
Author(s):  
Joonsuk Lee ◽  
Ping Yang ◽  
Andrew E. Dessler ◽  
Bo-Cai Gao ◽  
Steven Platnick

Abstract To understand the radiative impact of tropical thin cirrus clouds, the frequency of occurrence and optical depths of these clouds have been derived. “Thin” cirrus clouds are defined here as being those that are not detected by the operational Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask, corresponding to an optical depth value of approximately 0.3 or smaller, but that are detectable in terms of the cirrus reflectance product based on the MODIS 1.375-μm channel. With such a definition, thin cirrus clouds were present in more than 40% of the pixels flagged as “clear sky” by the operational MODIS cloud mask algorithm. It is shown that these thin cirrus clouds are frequently observed in deep convective regions in the western Pacific. Thin cirrus optical depths were derived from the cirrus reflectance product. Regions of significant cloud fraction and large optical depths were observed in the Northern Hemisphere during the boreal spring and summer and moved southward during the boreal autumn and winter. The radiative effects of tropical thin cirrus clouds were studied on the basis of the retrieved cirrus optical depths, the atmospheric profiles derived from the Atmospheric Infrared Sounder (AIRS) observations, and a radiative transfer model in conjunction with a parameterization of ice cloud spectral optical properties. To understand how these clouds regulate the radiation field in the atmosphere, the instantaneous net fluxes at the top of the atmosphere (TOA) and at the surface were calculated. The present study shows positive and negative net forcings at the TOA and at the surface, respectively. The positive (negative) net forcing at the TOA (surface) is due to the dominance of longwave (shortwave) forcing. Both the TOA and surface forcings are in a range of 0–20 W m−2, depending on the optical depths of thin cirrus clouds.


2014 ◽  
Vol 7 (11) ◽  
pp. 11303-11343 ◽  
Author(s):  
A. Kylling ◽  
N. Kristiansen ◽  
A. Stohl ◽  
R. Buras-Schnell ◽  
C. Emde ◽  
...  

Abstract. Volcanic ash is commonly observed by infrared detectors on board Earth orbiting satellites. In the presence of ice and/or liquid water clouds the detected volcanic ash signature may be altered. In this paper the effect of ice and liquid water clouds on detection and retrieval of volcanic ash is quantified by simulating synthetic equivalents to satellite infrared images with a 3-D radiative transfer model. The simulations were made both with and without realistic water and ice clouds taken from European Centre for Medium-Range Weather Forecast (ECMWF) analysis data. The volcanic ash cloud fields were taken from simulations by the Lagrangian particle dispersion model FLEXPART. The radiative transfer calculations were made for the geometry and channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI), for the full duration of the Eyjafjallajökull 2010 and Grímsvötn 2011 eruptions. The synthetic SEVIRI images were then used as input to standard reverse absorption ash detection and retrieval methods. Meteorological clouds were on average found to reduce the number of detected ash affected pixels by 6–12%. However, the effect was highly variable and for individual scenes up to 40% of pixels with mass loading > 0.2 g m−2 could not be detected due to the presence of water and ice clouds. The detection efficiency (detected ash pixels relative to Flexpart ash pixels with ash loading > 0.2 g m−2) was on average only 14.6% (22.1%) for the cloudy (cloudless) simulation for the Eyjafjallajökull 2010 eruption, and 3.6% (10.0%) for the Grímsvötn 2011 eruption. If only Flexpart ash pixels with ash loading > 1.0 g m−2 are considered the detection efficiency increase to 54.7% (74.7) for the Eyjafjallajökull 2010 eruption and to 4.8% (15.1%) for the Grímsvötn 2011 eruption. For coincident pixels, i.e., pixels where ash was both present in the Flexpart simulation and detected by the algorithm, the presence of meteorological clouds overall increased the retrieved mean mass loading for the Eyjafjallajökull 2010 eruption by about 13%, while for the Grímsvötn 2011 eruption ash mass loadings the effect was a 4% decrease of the retrieved ash mass loading. However, larger differences were seen between scenes (SD of ±30 and ±20% for Eyjafjallajökull and Grímsvötn respectively) and even larger ones within scenes. If all pixels are included the total mass from all scenes is severely underestimated. For the Eyjafjallajökull 2010 eruption the cloudless (cloudy) mass is underestimateed by 52% (66%) compared to the Flexpart mass, while for the Grímsvötn 2011 eruption the Flexpart mass is underestimated by 82% (91%) for the cloudless (cloudy) simulation. The impact of ice and liquid water clouds on the detection and retrieval of volcanic ash, implies that to fully appreciate the location and amount of ash, satellite ash measurements should be combined with ash dispersion modelling.


Sign in / Sign up

Export Citation Format

Share Document