scholarly journals Estimation of Consistent Global Microwave Land Surface Emissivity from AMSR-E and AMSR2 Observations

2018 ◽  
Vol 57 (4) ◽  
pp. 907-919 ◽  
Author(s):  
Satya Prakash ◽  
Hamid Norouzi ◽  
Marzi Azarderakhsh ◽  
Reginald Blake ◽  
Catherine Prigent ◽  
...  

AbstractAccurate estimation of passive microwave land surface emissivity (LSE) is crucial for numerical weather prediction model data assimilation, for microwave retrievals of land precipitation and atmospheric profiles, and for a better understanding of land surface and subsurface characteristics. In this study, global instantaneous LSE is estimated for a 9-yr period from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and for a 5-yr period from the Advanced Microwave Scanning Radiometer 2 (AMSR2) sensors. Estimates of LSE from both sensors were obtained by using an updated algorithm that minimizes the discrepancy between the differences in penetration depths from microwave and infrared remote sensing observations. Concurrent ancillary datasets such as skin temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) and profiles of air temperature and humidity from the Atmospheric Infrared Sounder are used. The latest collection 6 of MODIS skin temperature is used for the LSE estimation, and the differences between collections 6 and 5 are also comprehensively assessed. Analyses reveal that the differences between these two versions of infrared-based skin temperatures could lead to approximately a 0.015 difference in passive microwave LSE values, especially in arid regions. The comparison of global mean LSE features from the combined use of AMSR-E and AMSR2 with an independent product—Tool to Estimate Land Surface Emissivity from Microwave to Submillimeter Waves (TELSEM2)—shows spatial pattern correlations of order 0.92 at all frequencies. However, there are considerable differences in magnitude between these two LSE estimates, possibly because of differences in incidence angles, frequencies, observation times, and ancillary datasets.

2011 ◽  
Vol 50 (6) ◽  
pp. 1225-1235 ◽  
Author(s):  
Zhigang Yao ◽  
Jun Li ◽  
Jinlong Li ◽  
Hong Zhang

AbstractAn accurate land surface emissivity (LSE) is critical for the retrieval of atmospheric temperature and moisture profiles along with land surface temperature from hyperspectral infrared (IR) sounder radiances; it is also critical to assimilating IR radiances in numerical weather prediction models over land. To investigate the impact of different LSE datasets on Atmospheric Infrared Sounder (AIRS) sounding retrievals, experiments are conducted by using a one-dimensional variational (1DVAR) retrieval algorithm. Sounding retrievals using constant LSE, the LSE dataset from the Infrared Atmospheric Sounding Interferometer (IASI), and the baseline fit dataset from the Moderate Resolution Imaging Spectroradiometer (MODIS) are performed. AIRS observations over northern Africa on 1–7 January and 1–7 July 2007 are used in the experiments. From the limited regional comparisons presented here, it is revealed that the LSE from the IASI obtained the best agreement between the retrieval results and the ECMWF reanalysis, whereas the constant LSE gets the worst results when the emissivities are fixed in the retrieval process. The results also confirm that the simultaneous retrieval of atmospheric profile and surface parameters could reduce the dependence of soundings on the LSE choice and finally improve sounding accuracy when the emissivities are adjusted in the iterative retrieval. In addition, emissivity angle dependence is investigated with AIRS radiance measurements. The retrieved emissivity spectra from AIRS over the ocean reveal weak angle dependence, which is consistent with that from an ocean emissivity model. This result demonstrates the reliability of the 1DVAR simultaneous algorithm for emissivity retrieval from hyperspectral IR radiance measurements.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chunlei Meng ◽  
Huoqing Li

AbstractFengyun-4A is the new generation of Chinese geostationary meteorological satellites. Land surface albedo, land surface emissivity and land surface temperature are key states for land surface modelling. In this paper, the land surface albedo, land surface emissivity and land surface temperature data from Fengyun-4A were assimilated into the Integrated Urban land Model. The Fengyun-4A data are one of the data sources for the land data assimilation system which devoted to produce the high spatial and temporal resolution, multiple parameters near real-time land data sets. The Moderate-Resolution Imaging Spectroradiometer (MODIS) LSA and LSE data, the Institute of Atmospheric Physics, China Academy of Sciences (IAP) 325 m tower observation data and the observed 5 cm and 10 cm soil temperature data in more than 100 sites are used for validation. The results indicate the MODIS land surface albedo is much smaller than the Fengyun-4A and is superior to the Fengyun-4A for the Institute of Atmospheric Physics, China Academy of Sciences 325 m tower site. The Moderate-Resolution Imaging Spectroradiometer land surface emissivity is smaller than the Fengyun-4A in barren land surface and the differences is relatively small for other land use and land cover categories. In most regions of the research area, the Fengyun-4A land surface albedo and land surface emissivity are larger than those of the simulations. After the land surface albedo assimilation, in most regions the simulated net radiation was decreased. After the land surface emissivity assimilation, in most regions the simulated net radiation was increased. After the land surface temperature assimilation, the biases of the land surface temperature were decreased apparently; the biases of the daily average 5 cm and 10 cm soil temperature were decreased.


2008 ◽  
Vol 47 (1) ◽  
pp. 108-123 ◽  
Author(s):  
Suzanne W. Seemann ◽  
Eva E. Borbas ◽  
Robert O. Knuteson ◽  
Gordon R. Stephenson ◽  
Hung-Lung Huang

Abstract A global database of infrared (IR) land surface emissivity is introduced to support more accurate retrievals of atmospheric properties such as temperature and moisture profiles from multispectral satellite radiance measurements. Emissivity is derived using input from the Moderate Resolution Imaging Spectroradiometer (MODIS) operational land surface emissivity product (MOD11). The baseline fit method, based on a conceptual model developed from laboratory measurements of surface emissivity, is applied to fill in the spectral gaps between the six emissivity wavelengths available in MOD11. The six available MOD11 wavelengths span only three spectral regions (3.8–4, 8.6, and 11–12 μm), while the retrievals of atmospheric temperature and moisture from satellite IR sounder radiances require surface emissivity at higher spectral resolution. Emissivity in the database presented here is available globally at 10 wavelengths (3.6, 4.3, 5.0, 5.8, 7.6, 8.3, 9.3, 10.8, 12.1, and 14.3 μm) with 0.05° spatial resolution. The wavelengths in the database were chosen as hinge points to capture as much of the shape of the higher-resolution emissivity spectra as possible between 3.6 and 14.3 μm. The surface emissivity from this database is applied to the IR regression retrieval of atmospheric moisture profiles using radiances from MODIS, and improvement is shown over retrievals made with the typical assumption of constant emissivity.


2021 ◽  
Vol 13 (19) ◽  
pp. 3980
Author(s):  
Jiheng Hu ◽  
Yuyun Fu ◽  
Peng Zhang ◽  
Qilong Min ◽  
Zongting Gao ◽  
...  

Microwave land surface emissivity (MLSE) is an important geophysical parameter to determine the microwave radiative transfer over land and has broad applications in satellite remote sensing of atmospheric parameters (e.g., precipitation, cloud properties), land surface parameters (e.g., soil moisture, vegetation properties), and the parameters of interactions between atmosphere and terrestrial ecosystem (e.g., evapotranspiration rate, gross primary production rate). In this study, MLSE in China under both clear and cloudy sky conditions was retrieved using satellite passive microwave measurements from Aqua Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), combined with visible/infrared observations from Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), and the European Centre for Medium-Range Weather Forecasts (ECMWF) atmosphere reanalysis dataset of ERA-20C. Attenuations from atmospheric oxygen and water vapor, as well as the emissions and scatterings from cloud particles are taken into account using a microwave radiation transfer model to do atmosphere corrections. All cloud parameters needed are derived from MODIS visible and infrared instantaneous measurements. Ancillary surface skin temperature as well as atmospheric temperature-humidity profiles are collected from ECMWF reanalysis data. Quality control and sensitivity analyses were conducted for the input variables of surface skin temperature, air temperature, and atmospheric humidity. The ground-based validations show acceptable biases of primary input parameters (skin temperature, 2 m air temperature, near surface relative humidity, rain flag) for retrieving using. The subsequent sensitivity tests suggest that 10 K bias of skin temperature or observed brightness temperature may result in a 4% (~0.04) or 7% (0.07) retrieving error in MLSE at 23.5 GHz. A nonlinear sensitivity in the same magnitude is found for air temperature perturbation, while the sensitivity is less than 1% for 300 g/m2 error in cloud water path. Results show that our algorithm can successfully retrieve MLSE over 90% of the satellite detected land surface area in a typical cloudy day (cloud fraction of 64%), which is considerably higher than that of the 29% area by the clear-sky only algorithms. The spatial distribution of MLSE in China is highly dependent on the land surface types and topography. The retrieved MLSE is assessed by compared with other existing clear-sky AMSR-E emissivity products and the vegetation optical depth (VOD) product. Overall, high consistencies are shown for the MLSE retrieved in this study with other AMSR-E emissivity products across China though noticeable discrepancies are observed in Tibetan Plateau and Qinling-Taihang Mountains due to different sources of input skin temperature. In addition, the retrieved MLSE exhibits strong positive correlations in spatial patterns with microwave vegetation optical depth reported in the literature.


2012 ◽  
Vol 51 (6) ◽  
pp. 1164-1179 ◽  
Author(s):  
Virginie Capelle ◽  
Alain Chédin ◽  
Eric Péquignot ◽  
Peter Schlüssel ◽  
Stuart M. Newman ◽  
...  

AbstractLand surface temperature and emissivity spectra are essential variables for improving models of the earth surface–atmosphere interaction or retrievals of atmospheric variables such as thermodynamic profiles, chemical composition, cloud and aerosol characteristics, and so on. In most cases, emissivity spectral variations are not correctly taken into account in climate models, leading to potentially significant errors in the estimation of surface energy fluxes and temperature. Satellite infrared observations offer the dual opportunity of accurately estimating these properties of land surfaces as well as allowing a global coverage in space and time. Here, high-spectral-resolution observations from the Infrared Atmospheric Sounder Interferometer (IASI) over the tropics (30°N–30°S), covering the period July 2007–March 2011, are interpreted in terms of 1° × 1° monthly mean surface skin temperature and emissivity spectra from 3.7 to 14 μm at a resolution of 0.05 μm. The standard deviation estimated for the surface temperature is about 1.3 K. For the surface emissivity, it varies from about 1%–1.5% for the 10.5–14- and 5.5–8-μm windows to about 4% around 4 μm. Results from comparisons with products such as Moderate Resolution Imaging Spectroradiometer (MODIS) low-resolution emissivity and surface temperature or ECMWF forecast data (temperature only) are presented and discussed. Comparisons with emissivity derived from the Airborne Research Interferometer Evaluation System (ARIES) radiances collected during an aircraft campaign over Oman and made at the scale of the IASI field of view offer valuable data for the validation of the IASI retrievals.


2021 ◽  
Vol 13 (4) ◽  
pp. 817
Author(s):  
Zahra Sharifnezhad ◽  
Hamid Norouzi ◽  
Satya Prakash ◽  
Reginald Blake ◽  
Reza Khanbilvardi

Satellite-borne passive microwave radiometers provide brightness temperature (TB) measurements in a large spectral range which includes a number of frequency channels and generally two polarizations: horizontal and vertical. These TBs are widely used to retrieve several atmospheric and surface variables and parameters such as precipitation, soil moisture, water vapor, air temperature profile, and land surface emissivity. Since TBs are measured at different microwave frequencies with various instruments and at various incidence angles, spatial resolutions, and radiometric characteristics, a mere direct integration of them from different microwave sensors would not necessarily provide consistency. However, when appropriately harmonized, they can provide a complete dataset to estimate the diurnal cycle. This study first constructs the diurnal cycle of land TBs using the non-sun-synchronous Global Precipitation Measurement (GPM) Microwave Imager (GMI) observations by utilizing a cubic spline fit. The acquisition times of GMI vary from day to day and, therefore, the shape (amplitude and phase) of the diurnal cycle for each month is obtained by merging several days of measurements. This diurnal pattern is used as a point of reference when intercalibrated TBs from other passive microwave sensors with daily fixed acquisition times (e.g., Special Sensor Microwave Imager/Sounder, and Advanced Microwave Scanning Radiometer 2) are used to modify and tune the monthly diurnal cycle to daily diurnal cycle at a global scale. Since the GMI does not cover polar regions, the proposed method estimates a consistent diurnal cycle of land TBs at global scale. Results show that the shape and peak of the constructed TB diurnal cycle is approximately similar to the diurnal cycle of land surface temperature. The diurnal brightness temperature range for different land cover types has also been explored using the derived diurnal cycle of TBs. In general, a large diurnal TB range of more than 15 K has been observed for the grassland, shrubland, and tundra land cover types, whereas it is less than 5K over forests. Furthermore, seasonal variations in the diurnal TB range for different land cover types show a more consistent result over the Southern Hemisphere than over the Northern Hemisphere. The calibrated TB diurnal cycle may then be used to consistently estimate the diurnal cycle of land surface emissivity. Moreover, since changes in land surface emissivity are related to moisture change and freeze–thaw (FT) transitions in high-latitude regions, the results of this study enhance temporal detection of FT state, particularly during the transition times when multiple FT changes may occur within a day.


Sign in / Sign up

Export Citation Format

Share Document