scholarly journals Wind Gust Characterization at Wind Turbine Relevant Heights in Moderately Complex Terrain

2018 ◽  
Vol 57 (7) ◽  
pp. 1459-1476 ◽  
Author(s):  
W. Hu ◽  
F. Letson ◽  
R. J. Barthelmie ◽  
S. C. Pryor

AbstractImproved understanding of wind gusts in complex terrain is critically important to wind engineering and specifically the wind energy industry. Observational data from 3D sonic anemometers deployed at 3 and 65 m at a site in moderately complex terrain within the northeastern United States are used to calculate 10 descriptors of wind gusts and to determine the parent distributions that best describe these parameters. It is shown that the parent distributions exhibit consistency across different descriptors of the gust climate. Specifically, the parameters that describe the gust intensity (gust amplitude, rise magnitude, and lapse magnitude; i.e., properties that have units of length per time) fit the two-parameter Weibull distribution, those that are unitless ratios (gust factor and peak factor) are described by log-logistic distributions, and all other properties (peak gust, rise and lapse times, gust asymmetric factor, and gust length scale) are lognormally distributed. It is also shown that gust factors scale with turbulence intensity, but gusts are distinguishable in power spectra of the longitudinal wind component (i.e., they have demonstrably different length scales than the average eddy length scale). Gust periods at the lower measurement height (3 m) are consistent with shear production, whereas at 65 m they are not. At this site, there is only a weak directional dependence of gust properties on site terrain and land cover variability along sectorial transects, but large gust length scales and gust factors are more likely to be observed in unstable atmospheric conditions.

2019 ◽  
Vol 19 (6) ◽  
pp. 3797-3819 ◽  
Author(s):  
Frederick Letson ◽  
Rebecca J. Barthelmie ◽  
Weifei Hu ◽  
Sara C. Pryor

Abstract. Wind gusts are a key driver of aerodynamic loading, especially for tall structures such a bridges and wind turbines. However, gust characteristics in complex terrain are not well understood and common approximations used to describe wind gust behavior may not be appropriate at heights relevant to wind turbines and other structures. Data collected in the Perdigão experiment are analyzed herein to provide a foundation for improved wind gust characterization and process-level understanding of flow intermittency in complex terrain. High-resolution observations from sonic anemometers and vertically pointing Doppler lidars are used to conduct a detailed study of gust characteristics with a specific focus on the parent distributions of nine gust parameters (that describe velocity, time, and length scales), their joint distributions, height variation, and coherence in the vertical and horizontal planes. Best-fit distributional forms for varying gust properties show good agreement with those from previous experiments in moderately complex terrain but generate nonconservative estimates of the gust properties that are of key importance to structural loading. Probability distributions of gust magnitude derived from vertically pointing Doppler lidars exhibit good agreement with estimates from sonic anemometers despite differences arising from volumetric averaging and the terrain complexity. Wind speed coherence functions during gusty periods (which are important to structural wind loading) are similar to less complex sites for small vertical displacements (10 to 40 m), but do not exhibit an exponential form for larger horizontal displacements (800 to 1500 m).


2018 ◽  
Author(s):  
Frederick Letson ◽  
Rebecca J. Barthelmie ◽  
Weifei Hu ◽  
Sara C. Pryor

Abstract. Wind gusts are a key driver of aerodynamic loading, especially for tall structures such a bridges and wind turbines. However, gust characteristics in complex terrain are not well understood and common approximations used to describe wind gust behavior may not be appropriate at heights relevant to wind turbines and other structures. Data collected in the Perdigão experiment are analyzed herein to provide a foundation for improved wind gust characterization and process-level understanding of flow intermittency in complex terrain. High-resolution observations from sonic anemometers and vertically pointing Doppler lidars are used to conduct a detailed study of gust characteristics with a specific focus on the parent distributions of nine gust parameters (that describe velocity, time and length scales), their joint distributions, height variation and coherence in the vertical and horizontal planes. Best-fit distributional forms for varying gust properties show good agreement with those from previous experiments in moderately complex terrain but generate non-conservative estimates of the gust properties that are of key importance to structural loading. Probability distributions of gust magnitude derived from vertical pointing Doppler lidars exhibit good agreement with estimates from sonic anemometers despite differences arising from volumetric averaging and the terrain complexity. Wind speed coherence functions during gusty periods (which are important to structural wind loading) are similar to less complex sites for small vertical displacements (10 to 40 m), but do not exhibit an exponential form for larger horizontal displacements (800 to 1500 m).


Author(s):  
Jonathan D. W. Kahl ◽  
Brandon R. Selbig ◽  
Austin R. Harris

AbstractWind gusts are common to everyday life and affect a wide range of interests including wind energy, structural design, forestry, and fire danger. Strong gusts are a common environmental hazard that can damage buildings, bridges, aircraft, and trains, and interrupt electric power distribution, air traffic, waterways transport, and port operations. Despite representing the component of wind most likely to be associated with serious and costly hazards, reliable forecasts of peak wind gusts have remained elusive. A project at the University of Wisconsin-Milwaukee is addressing the need for improved peak gust forecasts with the development of the meteorologically stratified gust factor (MSGF) model. The MSGF model combines gust factors (the ratio of peak wind gust to average wind speed) with wind speed and direction forecasts to predict hourly peak wind gusts. The MSGF method thus represents a simple, viable option for the operational prediction of peak wind gusts. Here we describe the results of a project designed to provide the site-specific gust factors necessary for operational use of the MSGF model at a large number of locations across the United States. Gust web diagrams depicting the wind speed- and wind direction-stratified gust factors, as well as peak gust climatologies, are presented for all sites analyzed.


2019 ◽  
Vol 91 (1) ◽  
pp. 427-437
Author(s):  
Weifei Hu ◽  
Rebecca J. Barthelmie ◽  
Frederick Letson ◽  
Sara C. Pryor

Abstract Improved seismic noise characterization, due to varied sources, may benefit traditional applications. Some examples are earthquake detection, Earth structure research, and nuclear testing. This improvement could also permit use of seismic data in transdisciplinary research such as wind gust detection and wind turbine (WT) condition monitoring. However, it is a challenging task to unambiguously quantify relationships between potential sources of seismic noise and the actual seismic response. In this article, we analyze seismic and meteorological data (wind speed and pressure), measured at a remote site in a complex terrain area in eastern Portugal, to examine seismic signatures from WT operational status and wind gusts. Results presented herein show the following: (1) WT signatures in seismic data can be used to accurately determine WT‐operational status. Attenuation of WT signatures in seismic data exhibits an exponential decay with distance, with attenuation coefficients that scale with frequency. (2) After WT signatures are removed from seismic power spectra, wind gust signatures remain. Analyses of these data further indicate that it may be possible to extract quantitative wind gust estimates from seismic data and decompose them into pressure and shear stress drivers of this coupling.


2011 ◽  
Vol 52 (58) ◽  
pp. 223-230 ◽  
Author(s):  
Florence Naaim-Bouvet ◽  
Mohamed Naaim ◽  
Hervé Bellot ◽  
Kouichi Nishimura

AbstarctWind-transported snow is a common phenomenon in cold windy areas, creating snowdrifts and contributing significantly to the loading of avalanche release areas. It is therefore necessary to take into account snowdrift formation both in terms of predicting and controlling drift patterns. Particularly in an Alpine context, drifting snow is a nonstationary phenomenon, which has not been taken into account in physical modeling carried out in wind tunnels or in numerical simulations. Only a few studies have been conducted to address the relation between wind gusts and drifting-snow gusts. Consequently, the present study was conducted at the Lac Blanc pass (2700ma.s.l.) experimental site in the French Alps using a snow particle counter and a cup anemometer in order to investigate drifting-snow gusts. First, it was shown that the behavior of the wind gust factor was coherent with previous studies. Then the definition of wind gust factor was extended to a drifting-snow gust factor. Sporadic drifting-snow events were removed from the analysis to avoid artificially high drifting-snow gust factors. Two trends were identified: (1) A high 1 s peak and a mean 10 min drifting-snow gust factor, greater than expected, were observed for events that exhibited a gamma distribution on the particle width histogram. The values of drifting-snow gust factors decreased with increasing gust duration. (2) Small drifting-snow gusts (i.e. smaller than or of the same order of magnitude as wind gusts) were also observed. However, in this case, they were systematically characterized by a snow particle size distribution that differed from the two-parameter gamma probability density function.


Author(s):  
G. Rossini ◽  
A. Caimi ◽  
A. Redaelli ◽  
E. Votta

AbstractA Finite Element workflow for the multiscale analysis of the aortic valve biomechanics was developed and applied to three physiological anatomies with the aim of describing the aortic valve interstitial cells biomechanical milieu in physiological conditions, capturing the effect of subject-specific and leaflet-specific anatomical features from the organ down to the cell scale. A mixed approach was used to transfer organ-scale information down to the cell-scale. Displacement data from the organ model were used to impose kinematic boundary conditions to the tissue model, while stress data from the latter were used to impose loading boundary conditions to the cell level. Peak of radial leaflet strains was correlated with leaflet extent variability at the organ scale, while circumferential leaflet strains varied over a narrow range of values regardless of leaflet extent. The dependency of leaflet biomechanics on the leaflet-specific anatomy observed at the organ length-scale is reflected, and to some extent emphasized, into the results obtained at the lower length-scales. At the tissue length-scale, the peak diastolic circumferential and radial stresses computed in the fibrosa correlated with the leaflet surface area. At the cell length-scale, the difference between the strains in two main directions, and between the respective relationships with the specific leaflet anatomy, was even more evident; cell strains in the radial direction varied over a relatively wide range ($$0.36-0.87$$ 0.36 - 0.87 ) with a strong correlation with the organ length-scale radial strain ($$R^{2}= 0.95$$ R 2 = 0.95 ); conversely, circumferential cell strains spanned a very narrow range ($$0.75-0.88$$ 0.75 - 0.88 ) showing no correlation with the circumferential strain at the organ level ($$R^{2}= 0.02$$ R 2 = 0.02 ). Within the proposed simulation framework, being able to account for the actual anatomical features of the aortic valve leaflets allowed to gain insight into their effect on the structural mechanics of the leaflets at all length-scales, down to the cell scale.


Author(s):  
Richard Pichler ◽  
Richard D. Sandberg ◽  
Gregory Laskowski ◽  
Vittorio Michelassi

The effect of inflow turbulence intensity and turbulence length scales have been studied for a linear high-pressure turbine vane cascade at Reis = 590,000 and Mis = 0.93, using highly resolved compressible large-eddy simulations employing the WALE turbulence model. The turbulence intensity was varied between 6% and 20% while values of the turbulence length scales were prescribed between 5% and 20% of axial chord. The analysis focused on characterizing the inlet turbulence and quantifying the effect of the inlet turbulence variations on the vane boundary layers, in particular on the heat flux to the blade. The transition location on the suction side of the vane was found to be highly sensitive to both turbulence intensity and length scale, with the case with turbulence intensity 20% and 20% length scale showing by far the earliest onset of transition and much higher levels of heat flux over the entire vane. It was also found that the transition process was highly intermittent and local, with spanwise parts of the suction side surface of the vane remaining laminar all the way to the trailing edge even for high turbulence intensity cases.


Author(s):  
Timothy W. Repko ◽  
Andrew C. Nix ◽  
James D. Heidmann

An advanced, high-effectiveness film-cooling design, the anti-vortex hole (AVH) has been investigated by several research groups and shown to mitigate or counter the vorticity generated by conventional holes and increase film effectiveness at high blowing ratios and low freestream turbulence levels. [1, 2] The effects of increased turbulence on the AVH geometry were previously investigated and presented by researchers at West Virginia University (WVU), in collaboration with NASA, in a preliminary CFD study [3] on the film effectiveness and net heat flux reduction (NHFR) at high blowing ratio and elevated freestream turbulence levels for the adjacent AVH. The current paper presents the results of an extended numerical parametric study, which attempts to separate the effects of turbulence intensity and length-scale on film cooling effectiveness of the AVH. In the extended study, higher freestream turbulence intensity and larger scale cases were investigated with turbulence intensities of 5, 10 and 20% and length scales based on cooling hole diameter of Λx/dm = 1, 3 and 6. Increasing turbulence intensity was shown to increase the centerline, span-averaged and area-averaged adiabatic film cooling effectiveness. Larger turbulent length scales were shown to have little to no effect on the centerline, span-averaged and area-averaged adiabatic film-cooling effectiveness at lower turbulence levels, but slightly increased effect at the highest turbulence levels investigated.


2021 ◽  
Author(s):  
Shiyu Liu ◽  
Guangyu Bao ◽  
Zhenwei Ma ◽  
Christian Kastrup ◽  
Jianyu Li

Blood coagulates to plug vascular damage and stop bleeding, and thus the function of blood clots in hemostasis depends on their resistance against rupture (toughness). Despite the significance, fracture mechanics of blood clots remains largely unexplored, particularly the measurements of toughness and critical length scales governing clot fracture. Here, we study the fracture behavior of human whole blood clots and platelet-poor plasma clots. The fracture energy of whole blood clots and platelet-poor plasma clots determined using modified lap-shear method is 5.90 +- 1.18 J/m2 and 0.96 +- 0.90 J/m2, respectively. We find that the measured toughness is independent of the specimen geometry and loading conditions. These results reveal a significant contribution of blood cells to the clot fracture, as well as the dissipative length scale and nonlinear elastic length scale governing clot fracture.


2021 ◽  
Author(s):  
Alton Yeung

A small unmanned aerial vehicle (UAV) was developed with the specific objective to explore atmospheric wind gusts at low altitudes within the atmospheric boundary layer (ABL). These gusts have major impacts on the flight characteristics and performance of modern small unmanned aerial vehicles. Hence, this project was set to investigate the power spectral density of gusts observed at low altitudes by measuring the gusts with an aerial platform. The small UAV carried an air-data system including a fivehole probe that was adapted for this specific application. The air-data system measured the local wind gusts with an accuracy of 0.5 m/s by combining inputs from a five-hole probe, an inertial measurement unit, and Global Navigation Satellite System (GNSS) receivers. Over 20 flights were performed during the development of the aerial platform. Airborne experiments were performed to collect gust data at low altitudes between 50 m and 100 m. The result was processed into turbulence spectrum and the measurements were compared with the MIL-HDBK-1797 von K´arm´an turbulence model and the results have shown the model underpredicted the gust intensities experienced by the flight vehicle. The anisotropic properties of low-altitude turbulence were also observed when analyzing the measured gusts spectra. The wind and gust data collected are useful for verifying the existing turbulence models for low-altitude flights and benefit the future development of small UAVs in windy environment.


Sign in / Sign up

Export Citation Format

Share Document