scholarly journals Fracture Mechanics of Human Blood Clots: Measurements of Toughness and Critical Length scales

2021 ◽  
Author(s):  
Shiyu Liu ◽  
Guangyu Bao ◽  
Zhenwei Ma ◽  
Christian Kastrup ◽  
Jianyu Li

Blood coagulates to plug vascular damage and stop bleeding, and thus the function of blood clots in hemostasis depends on their resistance against rupture (toughness). Despite the significance, fracture mechanics of blood clots remains largely unexplored, particularly the measurements of toughness and critical length scales governing clot fracture. Here, we study the fracture behavior of human whole blood clots and platelet-poor plasma clots. The fracture energy of whole blood clots and platelet-poor plasma clots determined using modified lap-shear method is 5.90 +- 1.18 J/m2 and 0.96 +- 0.90 J/m2, respectively. We find that the measured toughness is independent of the specimen geometry and loading conditions. These results reveal a significant contribution of blood cells to the clot fracture, as well as the dissipative length scale and nonlinear elastic length scale governing clot fracture.

2021 ◽  
pp. 101444
Author(s):  
Shiyu Liu ◽  
Guangyu Bao ◽  
Zhenwei Ma ◽  
Christian J. Kastrup ◽  
Jianyu Li

2004 ◽  
Vol 467-470 ◽  
pp. 1039-1044 ◽  
Author(s):  
Elizabeth A. Holm ◽  
J.H. Meinke ◽  
E.S. McGarrity ◽  
P.M. Duxbury

With the development of new, fully three-dimensional metallographic techniques, there is considerable interest in characterizing three-dimensional microstructures in ways that go beyond twodimensional stereology. One characteristic of grain structures is the surface of lowest energy across the microstructure, termed the critical manifold (CM). When the grain boundaries are sufficiently weak, the CM lies entirely on grain boundaries, while when the grain boundaries are strong, cleavage occurs. A scaling theory for the cleavage to intergranular transition of CMs is developed. We find that a critical length scale exists, so that on short length scales cleavage is observed, while at long length scales the CM is rough. CMs for realistic polycrystalline grain structures, determined by a network optimization algorithm, are used to verify the analysis.


1994 ◽  
Vol 71 (05) ◽  
pp. 622-626 ◽  
Author(s):  
J H Beer ◽  
H P Kläy ◽  
T Herren ◽  
A Haeberli ◽  
P W Straub

SummaryA new phenomenon is described: Whole blood clots lyse faster in the plasma of the same donor than in another donor’s plasma. We have confirmed this finding in 68 healthy volunteers by a standardized, pairwise analysis and have found a mean difference in clot weights of 8.8 ± 0.99% (SEM, p<0.0001) after 6 h of urokinase-induced (200 U/ml) clot lysis. Nu difference was found in a group of 7 pairs of identical twins. Further analysis revealed that increasing concentrations of platelets in the plasma reduced the difference significantly but did not abolish it. A 1:1 mixture of autologous with homologous plasma reduced the autologous advantage by almost 50%, thus making an inhibitor unlikely. The absence of cellular components in clots of platelet- poor plasma resulted in the loss of the advantage after 2 h of lysis, but not in the early phase. We conclude that there is a clear advantage of autologous over homologous clot lysis. Potential mechanisms are discussed and include an increased affinity of enzymes for their substrates in a given individual.


1971 ◽  
Vol 25 (02) ◽  
pp. 354-378 ◽  
Author(s):  
R Gottlob ◽  
L Stockinger ◽  
U Pötting ◽  
G Schattenmann

SummaryIn vitro whole blood clots of various ages, experimental thrombi produced in the jugular vein of rabbits and human thrombi from arteries and veins were examined in semi-thin sections and by means of electron microscopy.In all types of clots examined a typical course of retraction was found. Retraction starts with a dense excentrical focus which grows into a densification ring. After 24 hours the entire clot becomes almost homogeneously dense; later a secondary swelling sets in.Shortly after coagulation the erythrocytes on the rim of the clot are bi-concave discs. They then assume the shape of crenate spheres, turn into smooth spheres and finally become indented ghosts which have lost the largest part of their contents. In the inner zone, which makes up the bulk of the clot, we observed bi-concave discs prior to retraction. After retraction we see no crenations but irregularly shaped erythrocytes. Once the secondary swelling sets in, the cross-section becomes polygonal and later spherical. After extensive hemolysis we observe the “retiform thrombus” made up of ghosts.Experimental and clinical thrombi present the same morphology but are differentiated from in vitro clots by: earlier hemolysis, immigration of leukocytes, formation of a rim layer consisting of fibrin and thrombocytes, and the symptoms of organization. Such symptoms of organization which definitely will prevent lysis with streptokinase were found relatively late in experimental and clinical thrombi. Capillary buds and capillary loops were never found in clinical thrombi prior to the third month.The morphological findings agree with earlier physical and enzymatic investigations. The observation that phenomena of reorganization occur relatively late and frequently only in the rim areas of large thrombi explains why lytic therapy is possible in some of the chronic obliterations.


Author(s):  
G. Rossini ◽  
A. Caimi ◽  
A. Redaelli ◽  
E. Votta

AbstractA Finite Element workflow for the multiscale analysis of the aortic valve biomechanics was developed and applied to three physiological anatomies with the aim of describing the aortic valve interstitial cells biomechanical milieu in physiological conditions, capturing the effect of subject-specific and leaflet-specific anatomical features from the organ down to the cell scale. A mixed approach was used to transfer organ-scale information down to the cell-scale. Displacement data from the organ model were used to impose kinematic boundary conditions to the tissue model, while stress data from the latter were used to impose loading boundary conditions to the cell level. Peak of radial leaflet strains was correlated with leaflet extent variability at the organ scale, while circumferential leaflet strains varied over a narrow range of values regardless of leaflet extent. The dependency of leaflet biomechanics on the leaflet-specific anatomy observed at the organ length-scale is reflected, and to some extent emphasized, into the results obtained at the lower length-scales. At the tissue length-scale, the peak diastolic circumferential and radial stresses computed in the fibrosa correlated with the leaflet surface area. At the cell length-scale, the difference between the strains in two main directions, and between the respective relationships with the specific leaflet anatomy, was even more evident; cell strains in the radial direction varied over a relatively wide range ($$0.36-0.87$$ 0.36 - 0.87 ) with a strong correlation with the organ length-scale radial strain ($$R^{2}= 0.95$$ R 2 = 0.95 ); conversely, circumferential cell strains spanned a very narrow range ($$0.75-0.88$$ 0.75 - 0.88 ) showing no correlation with the circumferential strain at the organ level ($$R^{2}= 0.02$$ R 2 = 0.02 ). Within the proposed simulation framework, being able to account for the actual anatomical features of the aortic valve leaflets allowed to gain insight into their effect on the structural mechanics of the leaflets at all length-scales, down to the cell scale.


Author(s):  
Richard Pichler ◽  
Richard D. Sandberg ◽  
Gregory Laskowski ◽  
Vittorio Michelassi

The effect of inflow turbulence intensity and turbulence length scales have been studied for a linear high-pressure turbine vane cascade at Reis = 590,000 and Mis = 0.93, using highly resolved compressible large-eddy simulations employing the WALE turbulence model. The turbulence intensity was varied between 6% and 20% while values of the turbulence length scales were prescribed between 5% and 20% of axial chord. The analysis focused on characterizing the inlet turbulence and quantifying the effect of the inlet turbulence variations on the vane boundary layers, in particular on the heat flux to the blade. The transition location on the suction side of the vane was found to be highly sensitive to both turbulence intensity and length scale, with the case with turbulence intensity 20% and 20% length scale showing by far the earliest onset of transition and much higher levels of heat flux over the entire vane. It was also found that the transition process was highly intermittent and local, with spanwise parts of the suction side surface of the vane remaining laminar all the way to the trailing edge even for high turbulence intensity cases.


Author(s):  
Timothy W. Repko ◽  
Andrew C. Nix ◽  
James D. Heidmann

An advanced, high-effectiveness film-cooling design, the anti-vortex hole (AVH) has been investigated by several research groups and shown to mitigate or counter the vorticity generated by conventional holes and increase film effectiveness at high blowing ratios and low freestream turbulence levels. [1, 2] The effects of increased turbulence on the AVH geometry were previously investigated and presented by researchers at West Virginia University (WVU), in collaboration with NASA, in a preliminary CFD study [3] on the film effectiveness and net heat flux reduction (NHFR) at high blowing ratio and elevated freestream turbulence levels for the adjacent AVH. The current paper presents the results of an extended numerical parametric study, which attempts to separate the effects of turbulence intensity and length-scale on film cooling effectiveness of the AVH. In the extended study, higher freestream turbulence intensity and larger scale cases were investigated with turbulence intensities of 5, 10 and 20% and length scales based on cooling hole diameter of Λx/dm = 1, 3 and 6. Increasing turbulence intensity was shown to increase the centerline, span-averaged and area-averaged adiabatic film cooling effectiveness. Larger turbulent length scales were shown to have little to no effect on the centerline, span-averaged and area-averaged adiabatic film-cooling effectiveness at lower turbulence levels, but slightly increased effect at the highest turbulence levels investigated.


Langmuir ◽  
2013 ◽  
Vol 29 (25) ◽  
pp. 8154-8163 ◽  
Author(s):  
Navid Sakhavand ◽  
Prakash Muthuramalingam ◽  
Rouzbeh Shahsavari

Soft Matter ◽  
2021 ◽  
Author(s):  
Abhik Samui ◽  
Julia M. Yeomans ◽  
Sumesh P. Thampi

Different flow regimes realised by a channel-confined active nematic have a characteristic length same as channel width. Flow structures exhibit the intrinsic length scale of the fluid only in the fully developed active turbulence regime.


2019 ◽  
Vol 29 (14) ◽  
pp. 2719-2753 ◽  
Author(s):  
Kenji Takizawa ◽  
Yuki Ueda ◽  
Tayfun E. Tezduyar

Variational multiscale methods, and their precursors, stabilized methods, have been very popular in flow computations in the past several decades. Stabilization parameters embedded in most of these methods play a significant role. The parameters almost always involve element length scales, most of the time in specific directions, such as the direction of the flow or solution gradient. We require the length scales, including the directional length scales, to have node-numbering invariance for all element types, including simplex elements. We propose a length scale expression meeting that requirement. We analytically evaluate the expression in the context of simplex elements and compared to one of the most widely used length scale expressions and show the levels of noninvariance avoided.


Sign in / Sign up

Export Citation Format

Share Document