Mechanisms Associated with Daytime and Nighttime Heat Waves over the Contiguous United States

2020 ◽  
Vol 59 (11) ◽  
pp. 1865-1882
Author(s):  
Natalie P. Thomas ◽  
Michael G. Bosilovich ◽  
Allison B. Marquardt Collow ◽  
Randal D. Koster ◽  
Siegfried D. Schubert ◽  
...  

AbstractHeat waves are extreme climate events that have the potential to cause immense stress on human health, agriculture, and energy systems, so understanding the processes leading to their onset is crucial. There is no single accepted definition for heat waves, but they are generally described as a sustained amount of time over which temperature exceeds a local threshold. Multiple different temperature variables are potentially relevant, because high values of both daily maximum and minimum temperatures can be detrimental to human health. In this study, we focus explicitly on the different mechanisms associated with summertime heat waves manifested during daytime hours versus nighttime hours over the contiguous United States. Heat waves are examined using the National Aeronautics and Space Administration Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Over 1980–2018, the increase in the number of heat-wave days per summer was generally stronger for nighttime heat-wave days than for daytime heat-wave days, with localized regions of significant positive trends. Processes linked with daytime and nighttime heat waves are identified through composite analysis of precipitation, soil moisture, clouds, humidity, and fluxes of heat and moisture. Daytime heat waves are associated with dry conditions, reduced cloud cover, and increased sensible heating. Mechanisms leading to nighttime heat waves differ regionally across the United States, but they are typically associated with increased clouds, humidity, and/or low-level temperature advection. In the midwestern United States, enhanced moisture is transported from the Gulf of Mexico during nighttime heat waves.

2018 ◽  
Vol 57 (7) ◽  
pp. 1535-1549 ◽  
Author(s):  
Evan M. Oswald

AbstractUnusually hot weather is a major concern to public health as well as other systems (e.g., ecological, economical, energy). This study utilized spatially continuous and homogenized observational surface climate data to examine changes in the regularity of heat waves in the continental United States. This included the examination of heat waves according only to daytime temperatures, nighttime temperatures, and both daytime and nighttime temperatures. Results confirmed a strong increase in the prevalence of heat waves between the mid-1970s and the dataset end (2015), and that increase was preceded by a mild decrease since the dataset beginning (1948). Results were unclear whether the prevalence of nighttime or simultaneous daytime–nighttime heat waves increased the most, but it was clear that increases were largest in the summer. The largest gains occurred in the West and Southwest, and a “warming hole” was most conspicuous in the northern Great plains. The changes in heat wave prevalence were similar to changes in the mean temperatures, and more so in the daytime heat waves. Daytime and nighttime heat waves coincided with one another more frequently in recent years than they did in the 1970s. Some parts of the United States (West Coast) were more likely than other parts to experience daytime and nighttime heat waves simultaneously. While linear trends were not sensitive to the climate dataset, trend estimation method, or heat wave definition, they were mildly sensitive to the start and end dates and extremely sensitive to the climate base period method (fixed in time or directly preceding any given heat wave).


2018 ◽  
Vol 114 ◽  
pp. 73-82 ◽  
Author(s):  
Sumil K. Thakrar ◽  
Andrew L. Goodkind ◽  
Christopher W. Tessum ◽  
Julian D. Marshall ◽  
Jason D. Hill

2007 ◽  
Vol 46 (11) ◽  
pp. 1993-2013 ◽  
Author(s):  
Reed P. Timmer ◽  
Peter J. Lamb

Abstract The increased U.S. natural gas price volatility since the mid-to-late-1980s deregulation generally is attributed to the deregulated market being more sensitive to temperature-related residential demand. This study therefore quantifies relations between winter (November–February; December–February) temperature and residential gas consumption for the United States east of the Rocky Mountains for 1989–2000, by region and on monthly and seasonal time scales. State-level monthly gas consumption data are aggregated for nine multistate subregions of three Petroleum Administration for Defense Districts of the U.S. Department of Energy. Two temperature indices [days below percentile (DBP) and heating degree-days (HDD)] are developed using the Richman–Lamb fine-resolution (∼1° latitude–longitude) set of daily maximum and minimum temperatures for 1949–2000. Temperature parameters/values that maximize DBP/HDD correlations with gas consumption are identified. Maximum DBP and HDD correlations with gas consumption consistently are largest in the Great Lakes–Ohio Valley region on both monthly (from +0.89 to +0.91) and seasonal (from +0.93 to +0.97) time scales, for which they are based on daily maximum temperature. Such correlations are markedly lower on both time scales (from +0.62 to +0.80) in New England, where gas is less important than heating oil, and on the monthly scale (from +0.55 to +0.75) across the South because of low January correlations. For the South, maximum correlations are for daily DBP and HDD indices based on mean or minimum temperature. The percentiles having the highest DBP index correlations with gas consumption are slightly higher for northern regions than across the South. This is because lower (higher) relative (absolute) temperature thresholds are reached in warmer regions before home heating occurs. However, these optimum percentiles for all regions are bordered broadly by surrounding percentiles for which the correlations are almost as high as the maximum. This consistency establishes the robustness of the temperature–gas consumption relations obtained. The reference temperatures giving the highest HDD correlations with gas consumption are lower for the colder northern regions than farther south where the temperature range is truncated. However, all HDD reference temperatures greater than +10°C (+15°C) yield similar such correlations for northern (southern) regions, further confirming the robustness of the findings. This robustness, coupled with the very high correlation magnitudes obtained, suggests that potentially strong gas consumption predictability would follow from accurate seasonal temperature forecasts.


Author(s):  
Ángeles Val del Río ◽  
Paula Carrera Fernández ◽  
José Luis Campos Gómez ◽  
Anuska Mosquera-Corral

The pollution of water bodies by an excess of nutrients (N and P) is a worldwide problem with effects on the human health, ecosystems status, climate change, etc. To face with this important issue different regulations were promulgated by the countries, sometimes based on the results from international conventions and programmes. In this chapter, a review of the laws and regulations that affect the discharge of nitrogen and phosphorus is addressed, focused in the case of Europe and the United States. Finally, a brief explanation about international initiatives was performed to understand the global framework concerning nutrients pollution.


2019 ◽  
Vol 11 (12) ◽  
pp. 3270 ◽  
Author(s):  
Lei Ye ◽  
Ke Shi ◽  
Zhuohang Xin ◽  
Chao Wang ◽  
Chi Zhang

Droughts and heat waves both are natural extreme climate events occurring in most parts of the world. To understand the spatio-temporal characteristics of droughts and heat waves in China, we examine changes in droughts, heat waves, and the compound of both during 1961–2017 based on high resolution gridded monthly sc_PDSI and daily temperature data. Results show that North China and Northwest China are the two regions that experience the most frequent droughts, while Central China is the least drought-affected region. Significant drought decreasing trends were mostly observed Qinghai, Xinjiang, and Tibet provinces, while the belt region between Yunnan and Heilongjiang provinces experienced significant drought increasing trends. Heat waves occur more frequently than droughts, and the increase of heat wave occurrence is also more obvious. The increasing of heat wave occurrence since the 2000s has been unprecedented. The compound droughts and heat waves were mild from the 1960s to 1980s, and began to increase in 1990s. Furthermore, the significant increasing trends of the percentage of compound droughts and heat waves to droughts are observed in entire China, and more than 90% drought occurrences are accompanied by one or more heat waves in the 2010s. The results highlight the increased percentage of compound droughts and heat waves and call for improved efforts on assessing the impact of compound extremes, especially in an era of changing climate.


2019 ◽  
Vol 77 (4) ◽  
pp. 197-215 ◽  
Author(s):  
Christopher D Gardner ◽  
Jennifer C Hartle ◽  
Rachael D Garrett ◽  
Lisa C Offringa ◽  
Arlin S Wasserman

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Chenjie Xian ◽  
Li He ◽  
Zhengwei He ◽  
Dongjian Xue ◽  
Zhe Li

Global warming has increased the chance of concurrent extreme climate events (weather or climate events that are rare within their statistical reference distributions in a particular place, such as heat waves, floods, and droughts). Crops grow best within specific temperature intervals, and excessive heat is detrimental to the physiological processes of crops and eventually affects yield levels. Analysing historical changes in concurrent extreme high temperatures is critical to preparing for and mitigating the negative effects of climatic change. The North China Plain (NCP) is the most important wheat production area in China. In this study, the spatiotemporal variations in temperature and heat wave trends in the NCP were analysed. Furthermore, we examined the potential of solar-induced chlorophyll fluorescence (SIF) to capture the influence of heat wave impacts on wheat crops in the NCP by comparing satellite remote sensing data of SIF and normalized difference vegetation index (NDVI) and validated ground-based yield data. The results indicate that temperatures and the number of heat wave days in the study region all show increasing trends, especially daily minimum temperature, which has increased by 0.38°C per decade for the past 30 years. Spatially, the southern NCP has suffered greater increasing-temperature trends and more heat wave days than the northern region. Regarding the response of SIF and NDVI to heat waves, SIF can better capture wheat yield decline due to heat waves compared to NDVI; thus, the SIF result indicated more sensitivity to heat waves compared to NDVI.


Sign in / Sign up

Export Citation Format

Share Document