scholarly journals Effects of Environmentally Induced Asymmetries on Hurricane Intensity: A Numerical Study

2004 ◽  
Vol 61 (24) ◽  
pp. 3065-3081 ◽  
Author(s):  
Liguang Wu ◽  
Scott A. Braun

Abstract The influence of uniform large-scale flow, the beta effect, and vertical shear of the environmental flow on hurricane intensity is investigated in the context of the induced convective or potential vorticity asymmetries in the core region with a hydrostatic primitive equation hurricane model. In agreement with previous studies, imposition of one of these environmental effects weakens the simulated tropical cyclones. In response to the environmental influence, significant wavenumber-1 asymmetries develop. Asymmetric and symmetric tendencies of the mean radial and azimuthal winds and temperature associated with the environment-induced convective asymmetries are evaluated. The inhibiting effects of environmental influences are closely associated with the resulting eddy momentum fluxes, which tend to decelerate tangential and radial winds in the inflow and outflow layers. The corresponding changes in the symmetric circulation tend to counteract the deceleration effect. The net effect is a moderate weakening of the mean tangential and radial winds. The reduced radial wind can be viewed as an anomalous secondary radial circulation with inflow in the upper troposphere and outflow in the lower troposphere, weakening the mean secondary radial circulation.

2010 ◽  
Vol 668 ◽  
pp. 480-499 ◽  
Author(s):  
P. K. MISHRA ◽  
A. K. DE ◽  
M. K. VERMA ◽  
V. ESWARAN

We present a numerical study of the reversals and reorientations of the large-scale circulation (LSC) of convective fluid in a cylindrical container of aspect ratio one. We take Prandtl number to be 0.7 and Rayleigh numbers in the range from 6 × 105 to 3 × 107. It is observed that the reversals of the LSC are induced by its reorientation along the azimuthal direction, which are quantified using the phases of the first Fourier mode of the vertical velocity measured near the lateral surface in the midplane. During a ‘complete reversal’, the above phase changes by around 180°, leading to reversals of the vertical velocity at all the probes. On the contrary, the vertical velocity reverses only at some of the probes during a ‘partial reversal’ with phase change other than 180°. Numerically, we observe rotation-led and cessation-led reorientations, in agreement with earlier experimental results. The ratio of the amplitude of the second Fourier mode and the first Fourier mode rises sharply during the cessation-led reorientations. This observation is consistent with the quadrupolar dominant temperature profile observed during the cessations. We also observe reorientations involving double cessation.


2007 ◽  
Vol 64 (5) ◽  
pp. 1443-1466 ◽  
Author(s):  
Robert J. Conzemius ◽  
Richard W. Moore ◽  
Michael T. Montgomery ◽  
Christopher A. Davis

Abstract Idealized simulations of a diabatic Rossby vortex (DRV) in an initially moist neutral baroclinic environment are performed using the fifth-generation National Center for Atmospheric Research–Pennsylvania State University (NCAR–PSU) Mesoscale Model (MM5). The primary objective is to test the hypothesis that the formation and maintenance of midlatitude warm-season mesoscale convective vortices (MCVs) are largely influenced by balanced flow dynamics associated with a vortex that interacts with weak vertical shear. As a part of this objective, the simulated DRV is placed within the context of the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) field campaign by comparing its tangential velocity, radius of maximum winds, CAPE, and shear with the MCVs observed in BAMEX. The simulations reveal two distinct scales of development. At the larger scale, the most rapidly growing moist baroclinic mode is excited, and exponential growth of this mode occurs during the simulation. Embedded within the large-scale baroclinic wave is a convective system exhibiting the characteristic DRV development, with a positive potential vorticity (PV) anomaly in the lower troposphere and a negative PV anomaly in the upper troposphere, and the positive/negative PV doublet tilted downshear with height. The DRV warm-air advection mechanism is active, and the resulting deep convection helps to reinforce the DRV against the deleterious effects of environmental shear, causing an eastward motion of the convective system as a whole. The initial comparisons between the simulated DRVs and the BAMEX MCVs show that the simulated DRVs grew within background conditions of CAPE and shear similar to those observed for BAMEX MCVs and suggest that the same dynamical mechanisms are active. Because the BAMEX field campaign sampled MCVs in different backgrounds of CAPE and shear, the comparison also demonstrates the need to perform additional simulations to explore these different CAPE and shear regimes and to understand their impacts on the intensity and longevity of MCVs. Such a study has the additional benefit of placing MCV dynamics in an appropriate context for exploring their relevance to tropical cyclone formation.


2011 ◽  
Vol 68 (4) ◽  
pp. 878-903 ◽  
Author(s):  
Masayuki Kawashima

Abstract The effects of variations in low-level ambient vertical shear and horizontal shear on the alongfront variability of narrow cold frontal rainbands (NCFRs) that propagate into neutral and slightly unstable environments are investigated through a series of idealized cloud-resolving simulations. In cases initialized with slightly unstable sounding and weak ambient cross-frontal vertical shears, core-gap structures of precipitation along NCFRs occur that are associated with wavelike disturbances that derive their kinetic energy mainly from the mean local vertical shear and buoyancy. However, over a wide range of environmental conditions, core-gap structures of precipitation occur because of the development of a horizontal shear instability (HSI) wave along the NCFRs. The growth rate and amplitude of the HSI wave decrease significantly as the vertical shear of the ambient cross-front wind is reduced. These decreases are a consequence of the enhancement of the low-level local vertical shear immediately behind the leading edge. The strong local vertical shear acts to damp the vorticity edge wave on the cold air side of the shear zone, thereby suppressing the growth of the HSI wave through the interaction of the two vorticity edge waves. It is also noted that the initial wavelength of the HSI wave increases markedly with increasing horizontal shear. The local vertical shear around the leading edge is shown to damp long HSI waves more strongly than short waves, and the horizontal shear dependency of the wavelength is explained by the decrease in the magnitude of the vertical shear relative to that of the horizontal shear.


2020 ◽  
Vol 77 (3) ◽  
pp. 859-870 ◽  
Author(s):  
Matthew T. Gliatto ◽  
Isaac M. Held

Abstract Rossby waves, propagating from the midlatitudes toward the tropics, are typically absorbed by critical latitudes (CLs) in the upper troposphere. However, these waves typically encounter CLs in the lower troposphere first. We study a two-layer linear scattering problem to examine the effects of lower CLs on these waves. We begin with a review of the simpler barotropic case to orient the reader. We then progress to the baroclinic case using a two-layer quasigeostrophic model in which there is vertical shear in the mean flow on which the waves propagate, and in which the incident wave is assumed to be an external-mode Rossby wave. We use linearized equations and add small damping to remove the critical-latitude singularities. We consider cases in which either there is only one CL, in the lower layer, or there are CLs in both layers, with the lower-layer CL encountered first. If there is only a CL in the lower layer, the wave’s response depends on the sign of the mean potential vorticity gradient at this lower-layer CL: if the PV gradient is positive, then the CL partially absorbs the wave, as in the barotropic case, while for a negative PV gradient, the CL is a wave emitter, and can potentially produce overreflection and/or overtransmission. Our numerical results indicate that overtransmission is by far the dominant response in these cases. When an upper-layer absorbing CL is encountered, following the lower-layer encounter, one can still see the signature of overtransmission at the lower-layer CL.


2012 ◽  
Vol 12 (7) ◽  
pp. 17539-17581
Author(s):  
K. J. Tory ◽  
R. A. Dare ◽  
N. E. Davidson ◽  
J. L. McBride ◽  
S. S. Chand

Abstract. Studies of tropical cyclone (TC) formation from tropical waves have shown that TC formation requires a wave-relative quasi-closed circulation: the "marsupial pouch" concept. This results in a layerwise nearly contained region of atmosphere in which the modification of moisture, temperature and vorticity profiles by convective and boundary layer processes occurs undisturbed. The pouch concept is further developed in this paper. TCs develop near the centre of the pouch where the flow is in near solid body rotation. A reference-frame independent parameter is introduced that effectively measures the level of solid-body rotation in the lower troposphere. The parameter is the product of a normalized Okubo-Weiss parameter and absolute vorticity (OWZ). Using 20 yr of ERA-interim reanalysis data and the IBTrACS global TC database, it is shown 95% of TCs including, but not limited to, those forming in tropical waves are associated with enhanced levels of OWZ on both the 850 and 500 hPa pressure levels at the time of TC declaration, while 90% show enhanced OWZ for at least 24 h prior to declaration. This result prompts the question of whether the pouch concept extends beyond wave-type formation to all TC formations world-wide. Combining the OWZ with a low vertical shear requirement and lower troposphere relative humidity thresholds, an imminent genesis parameter is defined. The parameter includes only relatively large-scale fluid properties that are resolved by coarse grid model data (>150 km), which means it can be used as a TC detector for climate model applications. It is also useful as a cyclogenesis diagnostic in higher resolution models such as real-time global forecast models.


1998 ◽  
Vol 08 (01) ◽  
pp. 57-71
Author(s):  
Binson Joseph

We study the kinematics of mixing and transport of "passive" particles in two-dimensional thermal convection using a low-order spectral model proposed by Howard and Krishnamurti [1986]. This model allows for a large-scale flow spanning the layer width. Mixing by chaos in the oscillatory flow is demonstrated with the help of numerical Poincaré maps. The chaos induced transport process is characterized from a relation of the form ΔX2(t)~ tm, for large t, where ΔX2(t) is the mean square distance traveled by a cloud of particles. It is shown that the transport process can be either shear-flow dominated (m=2) or Brownian type (m=1) or an intermediate type characterized by fractional exponents (1<m<2), depending on the external parameters in the problem. The intermediate process has been found to be intermittent in nature. The present results are compared with earlier studies of chaotic advection and also some experimental observations. Directions for future work are also pointed out.


Author(s):  
WH Ho ◽  
TH New

An unsteady, two-dimensional numerical study was conducted to investigate the aerodynamic and flow characteristics of two bio-inspired corrugated airfoils at Re = 14,000 and compared with those of a smooth NACA0010 airfoil. Mean aerodynamic results reveal that the corrugated airfoils have better lift performance compared to the NACA0010 airfoil but incur slightly higher drag penalty. Mean flow streamlines indicate that this favourable performance is due to the ability of the corrugated airfoils in mitigating large-scale flow separations and stall. Unsteady flow field results show persistent formations of small recirculating vortices that remain within the corrugations at 10° angle-of-attack or less for one of the corrugated airfoil and below 15° for the other. In contrast, the flow behaviour can be highly turbulent with regular pairings of large-scale flow separation vortices along the upper surface at higher angles-of-attack. This not only disrupts the small recirculating vortices and causes them to detach from the corrugated surfaces, but it gets increasingly dominant at higher angles-of-attack resulting in regular lift and drag oscillations. At the end of each cycle, there is a sudden ejection of flow perpendicular to the airfoil surface and these disruptions manifest themselves as “kinks” in the instantaneous lift and drag of the corrugated airfoils. Therefore instead of regular fluctuations, the lift and drag curves have additional undulations. Despite that, the corrugations are able to produce larger pressure differentials between the upper and lower surfaces than the smooth airfoil. The current study demonstrates the intricate relationships between different sharp surface corrugations and favourable aerodynamic performance. In particular, results from this paper supports earlier investigations that corrugated airfoils may be used to good effects even at low Reynolds numbers, where flow separations are more likely.


Author(s):  
Chuanjin Lan ◽  
Zhen Li ◽  
Yanbao Ma

To make the best use of solar energy, most solar plants are located in deserts or dry and sandy areas, where most of the sand originate in sandstorms and desertification. For large scale solar plants, the structure of the solar panels can reduce the mean wind speed greatly, thus having a great effect on the deposition and entrainment process of the sand and dust. To study the effect of installment of solar panels on wind flow, numerical simulations are applied to get the turbulent flow field in the lee of the solar panels, with inclination angles ranging from 15° to 30° and at different spacing. The results show that 30° is the optimal choice and the performance with larger spacing at 2.5 times panel length is better than the case at 1.5 times.


2013 ◽  
Vol 13 (4) ◽  
pp. 2115-2132 ◽  
Author(s):  
K. J. Tory ◽  
R. A. Dare ◽  
N. E. Davidson ◽  
J. L. McBride ◽  
S. S. Chand

Abstract. Studies of tropical cyclone (TC) formation from tropical waves have shown that TC formation requires a wave-relative quasi-closed circulation: the "marsupial pouch" concept. This results in a layerwise nearly contained region of atmosphere in which the modification of moisture, temperature and vorticity profiles by convective and boundary layer processes occurs undisturbed. The pouch concept is further developed in this paper. TCs develop near the centre of the pouch where the flow is in near solid body rotation. A reference-frame independent parameter is introduced that effectively measures the level of solid-body rotation in the lower troposphere. The parameter is the product of a normalized Okubo-Weiss parameter and absolute vorticity (OWZ). Using 20 yr of ERA-interim reanalysis data and the IBTrACS global TC database, it is shown 95% of TCs including, but not limited to, those forming in tropical waves are associated with enhanced levels of OWZ on both the 850 and 500 hPa pressure levels at the time of TC declaration, while 90% show enhanced OWZ for at least 24 h prior to declaration. This result prompts the question of whether the pouch concept extends beyond wave-type formation to all TC formations world-wide. Combining the OWZ with a low vertical shear requirement and lower troposphere relative humidity thresholds, an imminent genesis parameter is defined. The parameter includes only relatively large-scale fluid properties that are resolved by coarse grid model data (>150 km), which means it can be used as a TC detector for climate model applications. It is also useful as a cyclogenesis diagnostic in higher resolution models such as real-time global forecast models.


Sign in / Sign up

Export Citation Format

Share Document