scholarly journals The Theory of Ice Nucleation by Heterogeneous Freezing of Deliquescent Mixed CCN. Part II: Parcel Model Simulation

2005 ◽  
Vol 62 (2) ◽  
pp. 261-285 ◽  
Author(s):  
Vitaly I. Khvorostyanov ◽  
Judith A. Curry

Abstract The new theory of ice nucleation by heterogeneous freezing of deliquescent mixed cloud condensation nuclei (CCN) presented in Part I is incorporated into a parcel model with explicit water and ice bin microphysics to simulate the process of ice nucleation under transient thermodynamic conditions. Simulations are conducted over the temperature range −4° to −60°C, with vertical velocities varying from 1 to 100 cm s−1, for varying initial relative humidities and aerosol characteristics. These simulations show that the same CCN that are responsible for the drop nucleation may initiate crystal nucleation and can be identified as ice nuclei (IN) when crystals form. The simulated nucleation rates and concentrations of nucleated crystals depend on temperature and supersaturation simultaneously, showing good agreement with observations but with noticeable differences when compared with classical temperature-only and supersaturation-only parameterizations. The kinetics of heterogeneous ice nucleation exhibits a negative feedback via water supersaturation, whereby ice nucleation depends on the water supersaturation that is diminished by ice crystal diffusional growth. This feedback is stronger than the corresponding feedback for drop nucleation, and may explain discrepancies between observed ice nuclei concentrations and ice crystal concentrations, the very small fraction of CCN that may serve as IN, and the much smaller crystal concentrations as compared to drop concentrations. The relative importance of heterogeneous versus homogeneous nucleation is examined for a variety of cloud conditions. Based on these calculations, a simple parameterization for ice crystal concentration is suggested for use in cloud models and large-scale models.

2014 ◽  
Vol 14 (11) ◽  
pp. 16493-16528 ◽  
Author(s):  
N. Hiranuma ◽  
M. Paukert ◽  
I. Steinke ◽  
K. Zhang ◽  
G. Kulkarni ◽  
...  

Abstract. A new heterogeneous ice nucleation parameterization that covers a wide temperature range (−36 to −78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is critical in order to accurately simulate the ice nucleation processes in cirrus clouds. The surface-scaled ice nucleation efficiencies of hematite particles, inferred by ns, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions that were realized by continuously changing temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost T-independent freezing was observed at −60 °C < T < −50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: −78 °C < T < −60 °C and −50 °C < T < −36 °C. More specifically, observations at T colder than −60 °C revealed that higher RHice was necessary to maintain constant ns, whereas T may have played a significant role in ice nucleation at T warmer than −50 °C. We implemented new ns parameterizations into two cloud models to investigate its sensitivity and compare with the existing ice nucleation schemes towards simulating cirrus cloud properties. Our results show that the new AIDA-based parameterizations lead to an order of magnitude higher ice crystal concentrations and inhibition of homogeneous nucleation in colder temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below −36 °C, can potentially have stronger influence on cloud properties such as cloud longevity and initiation when compared to previous parameterizations.


2017 ◽  
Vol 74 (11) ◽  
pp. 3799-3814 ◽  
Author(s):  
Songmiao Fan ◽  
Daniel A. Knopf ◽  
Andrew J. Heymsfield ◽  
Leo J. Donner

Abstract In this study, two parameterizations of ice nucleation rate on dust particles are used in a parcel model to simulate aircraft measurements of ice crystal number concentration Ni in the Arctic. The parcel model has detailed microphysics for droplet and ice nucleation, growth, and evaporation with prescribed vertical air velocities. Three dynamic regimes are considered, including large-scale ascent, cloud-top generating cells, and their combination. With observed meteorological conditions and aerosol concentrations, the parcel model predicts the number concentrations of size-resolved ice crystals, which may be compared to aircraft measurements. Model results show rapid changes with height/time in relative humidity, Ni, and thermodynamic phase partitioning, which is not resolved in current climate and weather forecasting models. Parameterizations for ice number and nucleation rate in mixed-phase stratus clouds are thus developed based on the parcel model results to represent the time-integrated effect of some microphysical processes in large-scale models.


2013 ◽  
Vol 13 (19) ◽  
pp. 9801-9818 ◽  
Author(s):  
P. Spichtinger ◽  
M. Krämer

Abstract. The occurrence of high, persistent ice supersaturation inside and outside cold cirrus in the tropical tropopause layer (TTL) remains an enigma that is intensely debated as the "ice supersaturation puzzle". However, it was recently confirmed that observed supersaturations are consistent with very low ice crystal concentrations, which is incompatible with the idea that homogeneous freezing is the major method of ice formation in the TTL. Thus, the tropical tropopause "ice supersaturation puzzle" has become an "ice nucleation puzzle". To explain the low ice crystal concentrations, a number of mainly heterogeneous freezing methods have been proposed. Here, we reproduce in situ measurements of frequencies of occurrence of ice crystal concentrations by extensive model simulations, driven by the special dynamic conditions in the TTL, namely the superposition of slow large-scale updraughts with high-frequency short waves. From the simulations, it follows that the full range of observed ice crystal concentrations can be explained when the model results are composed from scenarios with consecutive heterogeneous and homogeneous ice formation and scenarios with pure homogeneous ice formation occurring in very slow (< 1 cm s−1) and faster (> 1 cm s−1) large-scale updraughts, respectively. This statistical analysis shows that about 80% of TTL cirrus can be explained by "classical" homogeneous ice nucleation, while the remaining 20% stem from heterogeneous and homogeneous freezing occurring within the same environment. The mechanism limiting ice crystal production via homogeneous freezing in an environment full of gravity waves is the shortness of the gravity waves, which stalls freezing events before a higher ice crystal concentration can be formed.


2010 ◽  
Vol 10 (2) ◽  
pp. 2669-2710 ◽  
Author(s):  
J. A. Curry ◽  
V. I. Khvorostyanov

Abstract. Several different types of parameterization of heterogeneous ice nucleation for cloud and climate models have been developed over the past decades, ranging from empirically-derived expressions to parameterizations of ice crystal nucleation rates derived from theory (including the parameterization developed by the authors, hereafter referred to as KC). Parameterizations schemes that address the deliquescence-freezing (DF), which combines the thermodynamically indistinguishable modes of condensation freezing and immersion freezing, are assessed here in the context of thermodynamic constraints, laboratory measurements, and recent field measurements. It is shown that empirical schemes depending only on the ice saturation ratio or only on temperature can produce reasonable crystal concentrations, but ice crystal nucleation is thermodynamically prohibited in certain regions of the temperature-saturation ratio phase space. Some recent empirical parameterizations are shown to have insufficient efficiency, yielding clouds that are almost entire liquid at temperatures as low as −35 °C. A reasonable performance of the KC ice nucleation scheme is demonstrated by comparison with data from several recent field campaigns, laboratory data, climatology of cloud phase-state, and GCM parameterizations. Several mis-applications of the KC parameterization that appeared recently in the literature are described and corrected, by emphasizing that a correct application of the KC scheme with simultaneous dependence on the temperature and saturation ratio requires integration of the individual nucleation rates over the measured size spectrum of the environmental aerosol, and not over the spectrum of ice nuclei equal to the crystal concentration at the exit of an experimental device. Simulation with a spectral bin model and correct application of KC scheme adequately describes ice nucleation via the DF mode and yields crystal concentrations and phase state close to those measured in the single-layer stratocumulus cloud observed in the Mixed Phase Arctic Cloud Experiment (MPACE). An assessment of some deficiencies in current parcel modeling methods and cloud chamber observations and their impact on parameterization development and evaluation is provided.


2004 ◽  
Vol 61 (22) ◽  
pp. 2676-2691 ◽  
Author(s):  
Vitaly I. Khvorostyanov ◽  
Judith A. Curry

Abstract This paper extends previous work on the theory of heterogenous ice nucleation. The goals of this analysis are to explain empirical observations of ice nucleation and to provide a suitable framework for modeling and parameterizing the ice nucleation process in cloud-scale and large-scale atmospheric models. Considered are the processes of heterogeneous freezing of deliquescent mixed cloud condensation nuclei that may serve as ice nuclei, and the properties of an ice germ critical radius, energy, and nucleation rate of ice crystals are examined as functions of temperature and supersaturation. Expressions for nucleation in a polydisperse aerosol for the deliquescence-freezing mode are developed. Equations are derived for the threshold and critical saturation ratios as functions of temperature and nucleation rate, and for the threshold and critical temperatures as functions of saturation ratio. Equivalence of the new formulation for the freezing point depression with traditional expressions is shown and the concepts of the effective temperature and supercooling are introduced. These new formulations are used in a companion paper for simulations of ice nucleation using a cloud parcel model.


2011 ◽  
Vol 11 (11) ◽  
pp. 29601-29646 ◽  
Author(s):  
D. Barahona

Abstract. This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation relies on a statistical view of the ice nucleation process and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, and, in the case of heterogeneous ice nucleation, on the distributions of particle area and surface composition. The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation it was found that ice nucleation on efficient ice nuclei (IN) shows features consistent with the singular hypothesis (characterized by a lack of temporal dependency of the ice nucleation spectrum) whereas less efficient IN tend to display stochastic behavior. Analysis of empirical nucleation spectra suggested that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework were theoretical predictions, laboratory measurements and field campaign data can be reconciled, and that is suitable for application in atmospheric modeling studies.


2010 ◽  
Vol 67 (8) ◽  
pp. 2417-2436 ◽  
Author(s):  
T. Eidhammer ◽  
P. J. DeMott ◽  
A. J. Prenni ◽  
M. D. Petters ◽  
C. H. Twohy ◽  
...  

Abstract The initiation of ice in an isolated orographic wave cloud was compared with expectations based on ice nucleating aerosol concentrations and with predictions from new ice nucleation parameterizations applied in a cloud parcel model. Measurements of ice crystal number concentrations were found to be in good agreement both with measured number concentrations of ice nuclei feeding the clouds and with ice nuclei number concentrations determined from the residual nuclei of cloud particles collected by a counterflow virtual impactor. Using lognormal distributions fitted to measured aerosol size distributions and measured aerosol chemical compositions, ice nuclei and ice crystal concentrations in the wave cloud were reasonably well predicted in a 1D parcel model framework. Two different empirical parameterizations were used in the parcel model: a parameterization based on aerosol chemical type and surface area and a parameterization that links ice nuclei number concentrations to the number concentrations of particles with diameters larger than 0.5 μm. This study shows that aerosol size distribution and composition measurements can be used to constrain ice initiation by primary nucleation in models. The data and model results also suggest the likelihood that the dust particle mode of the aerosol size distribution controls the number concentrations of the heterogeneous ice nuclei, at least for the lower temperatures examined in this case.


2020 ◽  
Vol 77 (11) ◽  
pp. 3951-3970
Author(s):  
Wojciech W. Grabowski

AbstractA single nonprecipitating cumulus congestus setup is applied to compare droplet spectra grown by the diffusion of water vapor in Eulerian bin and particle-based Lagrangian microphysics schemes. Bin microphysics represent droplet spectral evolution applying the spectral density function. In the Lagrangian microphysics, computational particles referred to as superdroplets are followed in time and space with each superdroplet representing a multiplicity of natural cloud droplets. The same cloud condensation nuclei (CCN) activation and identical representation of the droplet diffusional growth allow the comparison. The piggybacking method is used with the two schemes operating in a single simulation, one scheme driving the dynamics and the other one piggybacking the simulated flow. Piggybacking allows point-by-point comparison of droplet spectra predicted by the two schemes. The results show the impact of inherent limitations of the two microphysics simulation methods, numerical diffusion in the Eulerian scheme and a limited number of superdroplets in the Lagrangian scheme. Numerical diffusion in the Eulerian scheme results in a more dilution of the cloud upper half and thus smaller cloud droplet mean radius. The Lagrangian scheme typically has larger spatial fluctuations of droplet spectral properties. A significantly larger mean spectral width in the bin microphysics across the entire cloud depth is the largest difference between the two schemes. A fourfold increase of the number of superdroplets per grid volume and a twofold increase of the spectral resolution and thus the number of bins have small impact on the results and provide only minor changes to the comparison between simulated cloud properties.


2018 ◽  
Vol 11 (1) ◽  
pp. 103-120 ◽  
Author(s):  
Wojciech W. Grabowski ◽  
Piotr Dziekan ◽  
Hanna Pawlowska

Abstract. We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN) that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the activation implementation, transport of super-droplets in the physical space, and the coupling between super-droplets and the Eulerian temperature and water vapor field are discussed in detail. Some of these are relevant to the original super-droplet methodology as well and to the ice phase modeling using the Lagrangian approach. As a computational example, the scheme is applied to an idealized moist thermal rising in a stratified environment, with the original super-droplet methodology providing a benchmark to which the new scheme is compared.


2012 ◽  
Vol 12 (24) ◽  
pp. 12061-12079 ◽  
Author(s):  
X. Liu ◽  
X. Shi ◽  
K. Zhang ◽  
E. J. Jensen ◽  
A. Gettelman ◽  
...  

Abstract. In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0 ± 0.1 W m−2 (1σ uncertainty) and 2.4 ± 0.1 W m−2, respectively due to the presence of dust IN, with the net cloud forcing change of −0.40 ± 0.20 W m−2. Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205–230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190–205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (> 200 L−1) and underestimate the frequency of low ice crystal number concentration (< 30 L−1) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.


Sign in / Sign up

Export Citation Format

Share Document