scholarly journals Quadrant-Dependent Evolution of Low-Level Tangential Wind of a Tropical Cyclone in the Shear Flow

2016 ◽  
Vol 73 (3) ◽  
pp. 1159-1177 ◽  
Author(s):  
Jian-Feng Gu ◽  
Zhe-Min Tan ◽  
Xin Qiu

Abstract This study investigates the quadrant-by-quadrant evolution of the low-level tangential wind near the eyewall of an idealized simulated mature tropical cyclone embedded in a unidirectional shear flow. It is found that the quadrant-averaged tangential wind in the right-of-shear quadrants weakens continuously, while that in the left-of-shear quadrants experiences a two-stage evolution: a quasi-steady stage followed by a weakening stage after the imposing of vertical wind shear. This leads to a larger weakening rate in the right-of-shear and a stronger jet in the left-of-shear quadrants. The budget analysis shows that the quadrant-dependent evolution of tangential wind is controlled through the balance between the generalized Coriolis force (GCF; i.e., the radial advection of absolute angular momentum) and the advection terms. The steady decreasing of the GCF is primarily responsible for the continuous weakening of jet strength in the right-of-shear quadrants. For the left-of-shear quadrants, the quasi-steady stage is due to the opposite contributions by the enhanced GCF and negative tendency of advections cancelling out each other. The later weakening stage is the result of both the decreased GCF and the negative tangential advection. The combination of storm-relative flows at vortex scale and the convection strength both within and outside the eyewall determines the evolution of boundary layer inflow asymmetries, which in turn results in the change of GCF, leading to the quadrant-dependent evolution of low-level jet strength and thus the overall storm intensity change.

2018 ◽  
Vol 75 (8) ◽  
pp. 2687-2709 ◽  
Author(s):  
William A. Komaromi ◽  
James D. Doyle

Abstract The interaction between a tropical cyclone (TC) and an upper-level trough is simulated in an idealized framework using Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) for Tropical Cyclones (COAMPS-TC) on a β plane. We explore the effect of the trough on the environment, structure, and intensity of the TC. In a simulation that does not have a trough, environmental inertial stability is dominated by Coriolis, and outflow remains preferentially directed equatorward throughout the simulation. In the presence of a trough, negative storm-relative tangential wind in the base of the trough reduces the inertial stability such that the outflow shifts from equatorward to poleward. This interaction results in a ~24-h period of enhanced upper-level divergence coincident with intensification of the TC. Sensitivity tests reveal that if the TC is too far from the trough, favorable interaction does not occur. If the TC is too close to the trough, the storm weakens because of enhanced vertical wind shear. Only when the relative distance between the TC and the trough is 0.2–0.3 times the wavelength of the trough in x and 0.8–1.2 times the amplitude of the trough in y does favorable interaction and TC intensification occur. However, stochastic effects make it difficult to isolate the intensity change associated directly with the trough interaction. Outflow is found to be predominantly ageostrophic at small radii and deflects to the right (in the Northern Hemisphere) since it is unbalanced. The outflow becomes predominantly geostrophic at larger radii but not before a rightward deflection has already occurred. This finding sheds light on why the outflow accelerates toward but generally never reaches the region of lowest inertial stability.


Author(s):  
Muhammad Naufal Razin ◽  
Michael M. Bell

AbstractHurricane Ophelia (2005) underwent an unconventional eyewall replacement cycle (ERC) as it was a Category 1 storm located over cold sea surface temperatures near 23°C. The ERC was analyzed using airborne radar, flight-level, and dropsonde data collected during the Hurricane Rainband and Intensity Change Experiment (RAINEX) intensive observation period on 11 September 2005. Results showed that the spin-up of the secondary tangential wind maximum during the ERC can be attributed to the efficient convergence of absolute angular momentum by the mid-level inflow of Ophelia’s dominantly stratiform rainbands. This secondary tangential wind maximum strongly contributed to the azimuthal mean tangential wind field, which is conducive for increased low-level supergradient winds and corresponding outflow. The low-level supergradient forcing enhanced convergence to form a secondary eyewall. Ophelia provides a unique example of an ERC occurring in a weaker storm with predominantly stratiform rainbands, suggesting an important role of stratiform precipitation processes in the development of secondary eyewalls.


2019 ◽  
Vol 76 (8) ◽  
pp. 2309-2334 ◽  
Author(s):  
Buo-Fu Chen ◽  
Christopher A. Davis ◽  
Ying-Hwa Kuo

Abstract Given comparable background vertical wind shear (VWS) magnitudes, the initially imposed shear-relative low-level mean flow (LMF) is hypothesized to modify the structure and convective features of a tropical cyclone (TC). This study uses idealized Weather Research and Forecasting Model simulations to examine TC structure and convection affected by various LMFs directed toward eight shear-relative orientations. The simulated TC affected by an initially imposed LMF directed toward downshear left yields an anomalously high intensification rate, while an upshear-right LMF yields a relatively high expansion rate. These two shear-relative LMF orientations affect the asymmetry of both surface fluxes and frictional inflow in the boundary layer and thus modify the TC convection. During the early development stage, the initially imposed downshear-left LMF promotes inner-core convection because of high boundary layer moisture fluxes into the inner core and is thus favorable for TC intensification because of large radial fluxes of azimuthal mean vorticity near the radius of maximum wind in the boundary layer. However, TCs affected by various LMFs may modify the near-TC VWS differently, making the intensity evolution afterward more complicated. The TC with a fast-established eyewall in response to the downshear-left LMF further reduces the near-TC VWS, maintaining a relatively high intensification rate. For the upshear-right LMF that leads to active and sustained rainbands in the downshear quadrants, TC size expansion is promoted by a positive radial flux of eddy vorticity near the radius of 34-kt wind (1 kt ≈ 0.51 m s−1) because the vorticity associated with the rainbands is in phase with the storm-motion-relative inflow.


Author(s):  
Saïdou Madougou ◽  
Frederique Saïd ◽  
Bernard Campistron ◽  
Fadel Kebe Cheikh

In the Sahel, a vertical wind shear appears in the dry and in the wet seasons. In Niamey, Niger, during the dry season, the period of strong shears is clearly linked to the Nocturnal Low Level Jet (LLJ) since it occurs in a narrow time period around 06H00 UTC at 60% of the cases reach shears which require an alert to the pilots (higher than 4 ms-1 per 100 m). The majority of cases occur during the night with a wind shear direction between 90 and 150° per 100 m, which is shown that it is dangerous for aircraft. In Bamako, Mali, high wind shears represent (higher than 4 ms-1 per 100 m) only 16-22% of the cases and can occur at any time of the day. There are, however, 8% of the cases, the whole day long, when the wind shear can reach more than 6 ms-1 per 100 m. Most of the wind shear directions are also between 0 and 90° per 100 m during the night. This is why the Agency for the safety of aircraft navigation in Africa and Madagascar (ASECNA) has put in 2004 at Bamako airport an UHF wind profiler radar for monitoring nocturnal strong Low Level Jet wind shear which occur regularly in this airport.


2005 ◽  
Vol 62 (9) ◽  
pp. 3193-3212 ◽  
Author(s):  
Joey H. Y. Kwok ◽  
Johnny C. L. Chan

Abstract The influence of a uniform flow on the structural changes of a tropical cyclone (TC) is investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Idealized experiments are performed on either an f plane or a β plane. A strong uniform flow on an f plane results in a weaker vortex due to the development of a vertical wind shear induced by the asymmetric vertical motion and a rotation of upper-level anticyclone. The asymmetric vertical motion also reduces the secondary circulation of the vortex. On a β plane with no flow, a broad anticyclonic flow is found to the southeast of the vortex, which expands with time. Similar to the f-plane case, asymmetric vertical motion and vertical wind shear are also found. This beta-induced shear weakens the no-flow case significantly relative to that on an f plane. When a uniform flow is imposed on a β plane, an easterly flow produces a stronger asymmetry whereas a westerly flow reduces it. In addition, an easterly uniform flow tends to strengthen the beta-induced shear whereas a westerly flow appears to reduce it by altering the magnitude and direction of the shear vector. As a result, a westerly flow enhances TC development while an easterly flow reduces it. The vortex tilt and midlevel warming found in this study agree with the previous investigations of vertical wind shear. A strong uniform flow with a constant f results in a tilted and deformed potential vorticity at the upper levels. For a variable f, such tilting is more pronounced for a vortex in an easterly flow, while a westerly flow reduces the tilt. In addition, the vortex tilt appears to be related to the midlevel warming such that the warm core in the lower troposphere cannot extent upward, which leads to the subsequent weakening of the TC.


2017 ◽  
Vol 74 (9) ◽  
pp. 2989-2996 ◽  
Author(s):  
Daniel R. Chavas

Abstract In a recent study, a theory was presented for the dependence of tropical cyclone intensity on the ventilation of dry air by environmental vertical wind shear. This theory was found to successfully capture the statistics of intensity dynamics in the historical record. This theory is rederived here from a simple three-term power budget and extended to analytical solutions for the complete phase space, including the change in storm intensity itself. The derivation is then generalized to the case of a capped surface entropy flux wind speed, including analytical solutions defined relative to both the traditional potential intensity and the capped-flux potential intensity. The results demonstrate that a cap on the surface entropy flux wind speed reduces the potential intensity of the system and effectively amplifies the detrimental effect of ventilation on the tropical cyclone heat engine. However, such a cap does not alter the qualitative structure of the phase-space solution for intensity change phrased relative to the capped-flux potential intensity. Thus, the wind speed dependence of surface entropy fluxes is important for intensity change in real-world storms, though it is not a necessary condition for intensification in general. Indeed, a residual power surplus may remain available to intensify a storm even in the presence of a cap, though intensification may be fully suppressed for sufficiently strong ventilation. This work complements a recent numerical simulation study and provides further evidence that there is no disconnect between extant tropical cyclone theory and the finding in numerical simulations that a storm may intensify in the presence of capped surface entropy fluxes.


2005 ◽  
Vol 20 (2) ◽  
pp. 199-211 ◽  
Author(s):  
Hui Yu ◽  
H. Joe Kwon

Abstract Using large-scale analyses, the effect of tropical cyclone–trough interaction on tropical cyclone (TC) intensity change is readdressed by studying the evolution of upper-level eddy flux convergence (EFC) of angular momentum and vertical wind shear for two TCs in the western North Pacific [Typhoons Prapiroon (2000) and Olga (1999)]. Major findings include the following: 1) In spite of decreasing SST, the cyclonic inflow associated with a midlatitude trough should have played an important role in Prapiroon’s intensification to its maximum intensity and the maintenance after recurvature through an increase in EFC. The accompanied large vertical wind shear is concentrated in a shallow layer in the upper troposphere. 2) Although Olga also recurved downstream of a midlatitude trough, its development and maintenance were not strongly influenced by the trough. A TC could maintain itself in an environment with or without upper-level eddy momentum forcing. 3) Both TCs started to decay over cold SST in a large EFC and vertical wind shear environment imposed by the trough. 4) Uncertainty of input adds difficulties in quantitative TC intensity forecasting.


2015 ◽  
Vol 143 (5) ◽  
pp. 1762-1781 ◽  
Author(s):  
Fei He ◽  
Derek J. Posselt ◽  
Colin M. Zarzycki ◽  
Christiane Jablonowski

Abstract This paper presents a balanced tropical cyclone (TC) test case designed to improve current understanding of how atmospheric general circulation model (AGCM) configurations affect simulated TC development and behavior. It consists of an analytic initial condition comprising two independently balanced components. The first provides a vortical TC seed, while the second adds a planetary-scale zonal flow with height-dependent velocity and imposes background vertical wind shear (VWS) on the TC seed. The environmental flow satisfies the steady-state hydrostatic primitive equations in spherical coordinates and is in balance with other background field variables (e.g., temperature, surface geopotential). The evolution of idealized TCs in the test case framework is illustrated in 10-day simulations performed with the Community Atmosphere Model, version 5.1.1 (CAM 5.1.1). Environmental wind profiles with different magnitudes, directions, and vertical inflection points are applied to ensure that the technique is robust to changes in the VWS characteristics. The well-known shear-induced intensity change and structural asymmetry in tropical cyclones are well captured. Sensitivity of TC evolution to small perturbations in the initial vortex is also quantitatively addressed to validate the numerical robustness of the technique. It is concluded that the enhanced TC test case can be used to evaluate the impact of model choice (e.g., resolution, physical parameterizations) on the simulation and representation of TC-like vortices in AGCMs.


Sign in / Sign up

Export Citation Format

Share Document