scholarly journals A 1D Theoretical Analysis of Northerly Low-Level Jets over the Great Plains

2017 ◽  
Vol 74 (10) ◽  
pp. 3419-3431 ◽  
Author(s):  
Joshua G. Gebauer ◽  
Evgeni Fedorovich ◽  
Alan Shapiro

Abstract The forcing of northerly low-level jets over the eastward-sloped terrain of the U.S. Great Plains was studied using a one-dimensional (1D) nonstationary analytical model based on the Boussinesq-approximated equations of motion and thermal energy. For northerly low-level jets, the forcing from diurnal changes in surface heating of the sloped terrain (Holton mechanism) is out of phase with the nocturnal inertial oscillation resulting from the cessation of turbulent mixing at sunset (Blackadar mechanism), which results in weaker northerly nocturnal low-level jets when compared to southerly nocturnal low-levels jets with the same-magnitude background pressure gradient forcing. Because of the Blackadar and Holton mechanisms acting out of phase, nocturnal northerly low-level jets cannot solely explain the northerly low-level jet maximum over the Great Plains found in climatological studies. It is shown that negative buoyancy values over the eastward-sloped terrain enhance the low-level northerly geostrophic wind, which can cause low-level jetlike wind profiles that do not necessarily depend on the diurnal cycle. However, nocturnal northerly low-level jets primarily caused by an inertial oscillation still occur when daytime mixing is strong and buoyancy is small at sunset. These conditions are possible when strong capping inversions are present in the daytime convective boundary layer. The occurrence of both types of northerly low-level jets, those caused by negative buoyancy values over the sloped terrain and those driven by an inertial oscillation, better explains the findings of previous low-level jet climatologies.

2019 ◽  
Vol 147 (9) ◽  
pp. 3481-3493 ◽  
Author(s):  
Joshua G. Gebauer ◽  
Alan Shapiro

Abstract The frequency and intensity of the Great Plains nocturnal low-level jet (LLJ) are enhanced by baroclinicity over the sloped terrain of the region. A classical description of baroclinic-induced diurnal wind oscillations over the Great Plains considers differential heating of the slope with respect to air at the same elevation far removed from the slope, but with buoyancy constant along the slope (Holton mechanism). Baroclinicity can also occur due to differential heating of the slope itself, which creates a gradient in buoyancy along the slope. The relative prevalence of the two types of baroclinicity in this region has received scant attention in the literature. The present study uses 19 years of data from the Oklahoma Mesonet to evaluate the characteristics of along-slope buoyancy gradients over the region. A mean negative afternoon along-slope buoyancy gradient (east–west gradient) is found over Oklahoma. The sign of this afternoon buoyancy gradient is favorable for LLJ formation, as it results in the strongest southerly geostrophic wind near the ground around sunset, which is conducive to nocturnal jet formation via the inertial oscillation mechanism. The negative afternoon buoyancy gradient is at least partially created by an east–west gradient in diurnal heating and is stronger and more consistent in the summer months, which is when LLJs are most frequent. The contribution of the along-slope buoyancy gradient to the low-level geostrophic wind was found to be as important as the contribution of the Holton mechanism. Overall, these results indicate that along-slope buoyancy gradients should be accounted for in studies of LLJ dynamics over the Great Plains.


2016 ◽  
Vol 144 (8) ◽  
pp. 2963-2979 ◽  
Author(s):  
Thomas R. Parish

Abstract Detailed ground-based and airborne measurements were conducted of the summertime Great Plains low-level jet (LLJ) in central Kansas during the Plains Elevated Convection at Night (PECAN) campaign. Airborne measurements using the University of Wyoming King Air were made to document the vertical wind profile and the forcing of the jet during the nighttime hours on 3 June 2015. Two flights were conducted that document the evolution of the LLJ from sunset to dawn. Each flight included a series of vertical sawtooth and isobaric legs along a fixed track at 38.7°N between longitudes 98.9° and 100°W. Comparison of the 3 June 2015 LLJ was made with a composite LLJ case obtained from gridded output from the North American Mesoscale Forecast System for June and July of 2008 and 2009. Forcing of the LLJ was detected using cross sections of D values that allow measurement of the vertical profile of the horizontal pressure gradient force and the thermal wind. Combined with observations of the actual wind, ageostrophic components normal to the flight track can be detected. Observations show that the 3 June 2015 LLJ displayed classic features of the LLJ, including an inertial oscillation of the ageostrophic wind. Oscillations in the geostrophic wind as a result of diurnal heating and cooling of the sloping terrain are not responsible for the nocturnal wind maximum. Net daytime heating of the sloping Great Plains, however, is responsible for the development of a strong background geostrophic wind that is critical to formation of the LLJ.


2009 ◽  
Vol 48 (8) ◽  
pp. 1627-1642 ◽  
Author(s):  
P. Baas ◽  
F. C. Bosveld ◽  
H. Klein Baltink ◽  
A. A. M. Holtslag

Abstract A climatology of nocturnal low-level jets (LLJs) is presented for the topographically flat measurement site at Cabauw, the Netherlands. LLJ characteristics are derived from a 7-yr half-hourly database of wind speed profiles, obtained from the 200-m mast and a wind profiler. Many LLJs at Cabauw originate from an inertial oscillation, which develops after sunset in a layer decoupled from the surface by stable stratification. The data are classified to different types of stable boundary layers by using the geostrophic wind speed and the isothermal net radiative cooling as classification parameters. For each of these classes, LLJ characteristics like frequency of occurrence, height above ground level, and the turning of the wind vector across the boundary layer are determined. It is found that LLJs occur in about 20% of the nights, are typically situated at 140–260 m above ground level, and have a speed of 6–10 m s−1. Development of a substantial LLJ is most likely to occur for moderate geostrophic forcing and a high radiative cooling. A comparison with the 40-yr ECMWF Re-Analysis (ERA-40) is added to illustrate how the results can be used to evaluate the performance of atmospheric models.


2017 ◽  
Vol 32 (4) ◽  
pp. 1613-1635 ◽  
Author(s):  
Sean Stelten ◽  
William A. Gallus

Abstract The prediction of convective initiation remains a challenge to forecasters in the Great Plains, especially for elevated events at night. This study examines a subset of 287 likely elevated nocturnal convective initiation events that occurred with little or no direct influence from surface boundaries or preexisting convection over a 4-month period of May–August during the summer of 2015. Events were first classified into one of four types based on apparent formation mechanisms and location relative to any low-level jet. A climatology of each of the four types was performed focusing on general spatial tendencies over a large Great Plains domain and initiation timing trends. Simulations from five convection-allowing models available during the Plains Elevated Convection At Night (PECAN) field campaign, along with four versions of a 4-km Weather Research and Forecasting (WRF) Model, were used to examine the predictability of these types of convective initiation. A dual-peak pattern for initiation timing was revealed, with one peak near 0400 UTC and another around 0700 UTC. The times and prominence of each peak shifted depending on the region analyzed. Positive thermal advection by the geostrophic wind was present in the majority of events for three types but not for the type occurring without a low-level jet. Models were more deficient with location than timing for the five PECAN models, with the four 4-km WRF Models showing similar location errors and problems with initiating convection at a lower altitude than observed.


2016 ◽  
Vol 73 (8) ◽  
pp. 3037-3057 ◽  
Author(s):  
Alan Shapiro ◽  
Evgeni Fedorovich ◽  
Stefan Rahimi

Abstract A theory is presented for the Great Plains low-level jet in which the jet emerges in the sloping atmospheric boundary layer as the nocturnal phase of an oscillation arising from diurnal variations in turbulent diffusivity (Blackadar mechanism) and surface buoyancy (Holton mechanism). The governing equations are the equations of motion, mass conservation, and thermal energy for a stably stratified fluid in the Boussinesq approximation. Attention is restricted to remote (far above slope) geostrophic winds that blow along the terrain isoheights (southerly for the Great Plains). Diurnally periodic solutions are obtained analytically with diffusivities that vary as piecewise constant functions of time and slope buoyancies that vary as piecewise linear functions of time. The solution is controlled by 11 parameters: slope angle, Coriolis parameter, free-atmosphere Brunt–Väisälä frequency, free-atmosphere geostrophic wind, radiative damping parameter, day and night diffusivities, maximum and minimum surface buoyancies, and times of maximum surface buoyancy and sunset. The Holton mechanism, by itself, results in relatively weak wind maxima but produces strong jets when paired with the Blackadar mechanism. Jets with both Blackadar and Holton mechanisms operating are shown to be broadly consistent with observations and climatological analyses. Jets strengthen with increasing geostrophic wind, maximum surface buoyancy, and day-to-night ratio of the diffusivities and weaken with increasing Brunt–Väisälä frequency and magnitude of minimum slope buoyancy (greater nighttime cooling). Peak winds are maximized for slope angles characteristic of the Great Plains.


2010 ◽  
Vol 67 (8) ◽  
pp. 2690-2699 ◽  
Author(s):  
Thomas R. Parish ◽  
Larry D. Oolman

Abstract The summertime Great Plains low-level jet (LLJ) has been the subject of numerous investigations during the past several decades. Characteristics of the LLJ include nighttime development of a pronounced wind maximum of typically 15–20 m s−1 at levels 300–800 m above the surface and a clockwise rotation of the wind maximum during the course of the night. Maximum frequency of occurrence of the LLJ is found in the southern Great Plains. Theories proposed to explain the diurnal wind maximum of the Great Plains LLJ include inertial oscillation of the ageostrophic wind, the diurnal oscillation of the horizontal pressure field associated with heating and cooling of the sloping terrain, and the western boundary current interpretations. A simple equation system and output from the 12-km horizontal resolution Weather Research and Forecasting Nonhydrostatic Mesoscale Model (NAM) for July 2008 are used to provide evidence as to the importance of the Great Plains topography in driving the LLJ. Summertime heating of the sloping terrain is critical in establishing the climatological position for the Great Plains LLJ. Heating enhances the background geostrophic flow associated with the Bermuda high, resulting in a maximum low-level mean summertime flow over the Great Plains region. Maximum geostrophic winds in the NAM are found during late afternoon, providing a large background wind on which frictional decoupling can act. The nighttime LLJ maximum is the result of an inertial oscillation of the unbalanced components that arise fundamentally from frictional decoupling. Diurnal heating of the sloping terrain forces a cycle in the geostrophic wind that is out of phase with the wind maximum.


2010 ◽  
Vol 67 (8) ◽  
pp. 2679-2689 ◽  
Author(s):  
B. J. H. Van de Wiel ◽  
A. F. Moene ◽  
G. J. Steeneveld ◽  
P. Baas ◽  
F. C. Bosveld ◽  
...  

Abstract In the present work Blackadar’s concept of nocturnal inertial oscillations is extended. Blackadar’s concept describes frictionless inertial oscillations above the nocturnal inversion layer. The current work includes frictional effects within the nocturnal boundary layer. It is shown that the nocturnal wind speed profile describes an oscillation around the nocturnal equilibrium wind vector, rather than around the geostrophic wind vector (as in the Blackadar case). By using this perspective, continuous time-dependent wind profiles are predicted. As such, information on both the height and the magnitude of the nocturnal low-level jet is available as a function of time. Preliminary analysis shows that the proposed extension performs well in comparison with observations when a simple Ekman model is used to represent the equilibrium state in combination with a realistic initial velocity profile. In addition to jet dynamics, backward inertial oscillations are predicted at lower levels close to the surface, which also appear to be present in observations. The backward oscillation forms an important mechanism behind weakening low-level winds during the afternoon transition. Both observational and theoretical modeling studies are needed to explore this phenomenon further.


2015 ◽  
Vol 143 (6) ◽  
pp. 2319-2336 ◽  
Author(s):  
Brian J. Vanderwende ◽  
Julie K. Lundquist ◽  
Michael E. Rhodes ◽  
Eugene S. Takle ◽  
Samantha L. Irvin

Abstract In the U.S. state of Iowa, the increase in wind power production has motivated interest into the impacts of low-level jets on turbine performance. In this study, two commercial lidar systems were used to sample wind profiles in August 2013. Jets were systematically detected and assigned an intensity rating from 0 (weak) to 3 (strong). Many similarities were found between observed jets and the well-studied Great Plains low-level jet in summer, including average jet heights between 300 and 500 m above ground level, a preference for southerly wind directions, and a nighttime bias for stronger jets. Strong vertical wind shear and veer were observed, as well as veering over time associated with the LLJs. Speed, shear, and veer increases extended into the turbine-rotor layer during intense jets. Ramp events, in which winds rapidly increase or decrease in the rotor layer, were also commonly observed during jet formation periods. The lidar data were also used to evaluate various configurations of the Weather Research and Forecasting Model. Jet occurrence exhibited a stronger dependence on the choice of initial and boundary condition data, while reproduction of the strongest jets was influenced more strongly by the choice of planetary boundary layer scheme. A decomposition of mean model winds suggested that the main forcing mechanism for observed jets was the inertial oscillation. These results have implications for wind energy forecasting and site assessment in the Midwest.


2017 ◽  
Vol 56 (7) ◽  
pp. 1883-1895 ◽  
Author(s):  
Thomas R. Parish ◽  
Richard D. Clark

AbstractExtensive measurements were made of the summertime Great Plains low-level jet (LLJ) in central Kansas during June and July 2015 as a component of the Plains Elevated Convection at Night (PECAN) field study. Here, the authors describe the early phase of the LLJ development on 20 June 2015. Half-hourly soundings were launched to monitor the progress of the jet. An airborne mission was also conducted using the University of Wyoming King Air research aircraft. Vertical sawtooth patterns were flown along a fixed track at 38.7°N between longitudes 98.9° and 100.3°W to document changes in the potential temperature and wind profiles. Ageostrophic winds during the LLJ formation were also assessed. In addition, a high-resolution numerical simulation of the 20 June 2015 LLJ case was conducted using the Weather Research and Forecasting Model. Observations and model results show that the early stage of development consisted of a rapid increase in wind speed in the hours just after sunset with less pronounced directional change. The LLJ evolution is similar to that expected from an inertial oscillation of the ageostrophic wind following the stabilization of the near-surface layer.


2016 ◽  
Vol 31 (4) ◽  
pp. 1301-1323 ◽  
Author(s):  
Brian J. Squitieri ◽  
William A. Gallus

Abstract The Great Plains low-level jet (LLJ) fosters an environment that supports nocturnal mesoscale convective systems (MCSs) across the central United States during the summer months. The current study examines if LLJ forecast accuracy correlates with MCS precipitation forecast skill in 4-km WRF runs. LLJs were classified based on their synoptic background as either strongly forced, cyclonic flow (type C) or weakly forced, anticyclonic flow inertial oscillation driven (type A). Large-scale variables associated with the LLJ were examined. For all LLJs inclusive and the subset of type C LLJs alone, the forecast accuracy of the LLJ total wind direction significantly correlated with MCS precipitation forecast skill. For type C LLJ cases, where predictive skill for MCSs was higher overall, the LLJ ageostrophic wind direction forecast accuracy significantly correlated with MCS precipitation forecast skill during the LLJ and MCS developmental stages, with potential temperature and moisture forecast accuracy correlating well with the forecast skill of mature MCSs. Statistically significant correlations were mainly absent between MCS precipitation forecast skill and LLJ forecast accuracy for type A cases. It is thus suggested that either non-LLJ factors like most unstable convective available potential energy (MUCAPE) or most unstable convective inhibition (MUCIN) fields within close proximity of MCSs, or factors on smaller scales than analyzed (such as gravity waves or bores), may have the greatest potential influence on MCS precipitation forecast skill in LLJ-induced MCS cases in an ambient weakly forced synoptic regime.


Sign in / Sign up

Export Citation Format

Share Document