scholarly journals Testing the Sensitivity of the Extratropical Response to the Location, Amplitude, and Propagation Speed of Tropical Convection

2018 ◽  
Vol 75 (2) ◽  
pp. 639-655 ◽  
Author(s):  
Michael Goss ◽  
Steven B. Feldstein

Abstract The dynamical core of a dry global model is used to investigate the role of central Pacific versus warm pool tropical convection on the extratropical response over the North Pacific and North America. A series of model runs is performed in which the amplitude of the warm pool (WP) and central Pacific (CP) heating anomalies associated with the MJO and El Niño–Southern Oscillation (ENSO) is systematically varied. In addition, model calculations based on each of the eight MJO phases are performed, first using stationary heating, and then with heating corresponding to a 48-day MJO cycle and to a 32-day MJO cycle. In all model runs, the extratropical response to tropical convection occurs within 7–10 days of the convective heating. The response is very sensitive to the relative amplitude of the heating anomalies. For example, when heating anomalies in the WP and CP have similar amplitude but opposite sign, the amplitude of the extratropical response is much weaker than is typical for the MJO and ENSO. For the MJO, when the WP heating anomaly is much stronger than the CP heating anomaly (vice versa for ENSO), the extratropical response is amplified. For the MJO heating, it is found that the extratropical responses to phases 4 and 8 are most distinct. A likely factor contributing to this distinctiveness involves the relative amplitude of the two heating anomalies. The stationary and moving (48- and 32-day) heating responses are very similar, revealing a lack of sensitivity to the MJO phase speed.

2020 ◽  
Author(s):  
Kyung-Sook Yun ◽  
Axel Timmermann ◽  
Malte F. Stuecker

Abstract. The El Niño-Southern Oscillation (ENSO) influences the most extensive tropospheric circulation cells on our planet, known as Hadley and Walker circulations. Previous studies have largely focused on the effect of ENSO on the strength of these cells. However, what has remained uncertain is whether interannual sea surface temperature anomalies can also cause synchronized spatial shifts of these circulations. Here, by examining the spatio-temporal relationship between Hadley and Walker cells in observations and climate model experiments, we demonstrate that the seasonally evolving warm pool SST anomalies in the decay phase of an El Niño event generate a meridionally asymmetric Walker circulation response, which couples the zonal and meridional atmospheric overturning circulations. This process, which can be characterized as a phase-synchronized spatial shift in Walker and Hadley cells, is accompanied by cross-equatorial northwesterly low-level flow that diverges from an area of anomalous drying in the western North Pacific and converges towards a region with anomalous moistening in the southern central Pacific. Our results show that the SST-induced concurrent spatial shifts of the two circulations are climatically relevant as they can further amplify extratropical precipitation variability on interannual timescales.


2018 ◽  
Vol 31 (5) ◽  
pp. 1943-1962 ◽  
Author(s):  
Ruihuang Xie ◽  
Fei-Fei Jin

Modern instrumental records reveal that El Niño events differ in their spatial patterns and temporal evolutions. Attempts have been made to categorize them roughly into two main types: eastern Pacific (EP; or cold tongue) and central Pacific (CP; or warm pool) El Niño events. In this study, a modified version of the Zebiak–Cane (MZC) coupled model is used to examine the dynamics of these two types of El Niño events. Linear eigenanalysis of the model is conducted to show that there are two leading El Niño–Southern Oscillation (ENSO) modes with their SST patterns resembling those of two types of El Niño. Thus, they are referred to as the EP and CP ENSO modes. These two modes are sensitive to changes in the mean states. The heat budget analyses demonstrate that the EP (CP) mode is dominated by thermocline (zonal advective) feedback. Therefore, the weak (strong) mean wind stress and deep (shallow) mean thermocline prefer the EP (CP) ENSO mode because of the relative dominance of thermocline (zonal advective) feedback under such a mean state. Consistent with the linear stability analysis, the occurrence ratio of CP/EP El Niño events in the nonlinear simulations generally increases toward the regime where the linear CP ENSO mode has relatively higher growth rate. These analyses suggest that the coexistence of two leading ENSO modes is responsible for two types of El Niño simulated in the MZC model. This model result may provide a plausible scenario for the observed ENSO diversity.


2020 ◽  
Vol 33 (8) ◽  
pp. 3367-3380 ◽  
Author(s):  
Guosen Chen ◽  
Bin Wang

ABSTRACTThe eastward propagating Madden–Julian oscillation (MJO) events exhibit various speeds ranging from 1 to 9 m s−1, but what controls the propagation speed remains elusive. This study attempts to address this issue. It reveals that the Kelvin wave response (KWR) induced by the MJO convection is a major circulation factor controlling the observed propagation speed of the MJO, with a stronger KWR corresponding to faster eastward propagation. A stronger KWR can accelerate the MJO eastward propagation by enhancing the low-level premoistening and preconditioning to the east of the MJO deep convection. The strength of the KWR is affected by the background sea surface temperature (SST). When the equatorial central Pacific SST warms, the zonal scale of the Indo-Pacific warm pool expands, which increases the zonal scale of the MJO, favoring enhancing the KWR. This effect of warm-pool zonal scale has been verified by idealized experiments using a theoretical model. The findings here shed light on the propagation mechanism of the MJO and provide a set of potential predictors for forecasting the MJO propagation.


2013 ◽  
Vol 26 (17) ◽  
pp. 6506-6523 ◽  
Author(s):  
Hong-Li Ren ◽  
Fei-Fei Jin

Abstract The El Niño–Southern Oscillation (ENSO) tends to behave arguably as two different “types” or “flavors” in recent decades. One is the canonical cold-tongue-type ENSO with major sea surface temperature anomalies (SSTA) positioned over the eastern Pacific. The other is a warm-pool-type ENSO with SSTA centered in the central Pacific near the edge of the warm pool. In this study, the basic features and main feedback processes of these two types of ENSO are examined. It is shown that the interannual variability of upper-ocean heat content exhibits recharge–discharge processes throughout the life cycles of both the cold tongue (CT) and warm pool (WP) ENSO types. Through a heat budget analysis with focus on the interannual frequency band, the authors further demonstrate that the thermocline feedback plays a dominant role in contributing to the growth and phase transitions of both ENSO types, whereas the zonal advective feedback contributes mainly to their phase transitions. The westward shift of the SSTA center of the WP ENSO and the presence of significant surface easterly wind anomalies over the far eastern equatorial Pacific during its mature warm phase are the two main factors that lead to a reduced positive feedback for the eastern Pacific SSTA. Nevertheless, both the WP and CT ENSO can be understood to a large extent by the recharge oscillator mechanism.


2013 ◽  
Vol 26 (20) ◽  
pp. 8037-8054 ◽  
Author(s):  
Eun-Pa Lim ◽  
Harry H. Hendon ◽  
Harun Rashid

Abstract Predictability of the southern annular mode (SAM) for lead times beyond 1–2 weeks has traditionally been considered to be low because the SAM is regarded as an internal mode of variability with a typical decorrelation time of about 10 days. However, the association of the SAM with El Niño–Southern Oscillation (ENSO) suggests the potential for making seasonal predictions of the SAM. In this study the authors explore seasonal predictability and the predictive skill of SAM using observations and retrospective forecasts (hindcasts) from the Australian Bureau of Meteorology dynamical seasonal forecast system [the Predictive Ocean and Atmosphere Model for Australia, version 2 (POAMA2)]. Based on the observed seasonal relationships of the SAM with tropical sea surface temperatures, two distinctive periods of high seasonal predictability are suggested: austral late autumn to winter and late spring to early summer. Predictability of the SAM in the austral cold seasons stems from the association of the SAM with warm-pool (or Modoki/central Pacific) ENSO, whereas predictability in the austral warm seasons stems from the association of the SAM with cold-tongue (or eastern Pacific) ENSO. Using seasonal hindcasts for 1980–2010 from POAMA2, it is shown that the observed relationship between SAM and ENSO is faithfully depicted and SST variations associated with ENSO are skillfully predicted. Consequently, POAMA2 can skillfully predict the phase and amplitude of seasonal anomalies of the SAM in early summer and early winter for at least one season in advance. Zero-lead monthly forecasts of the SAM are furthermore shown to be highly skillful in almost all months, which is ascribed to predictability stemming from observed atmospheric initial conditions.


2021 ◽  
Vol 12 (1) ◽  
pp. 121-132
Author(s):  
Kyung-Sook Yun ◽  
Axel Timmermann ◽  
Malte F. Stuecker

Abstract. The El Niño–Southern Oscillation (ENSO) influences the most extensive tropospheric circulation cells on our planet, known as Hadley and Walker circulations. Previous studies have largely focused on the effect of ENSO on the strength of these cells. However, what has remained uncertain is whether interannual sea surface temperature anomalies can also cause synchronized spatial shifts of these circulations. Here, by examining the spatiotemporal relationship between Hadley and Walker cells in observations and climate model experiments, we demonstrate that the seasonally evolving warm-pool sea surface temperature (SST) anomalies in the decay phase of an El Niño event generate a meridionally asymmetric Walker circulation response, which couples the zonal and meridional atmospheric overturning circulations. This process, which can be characterized as a phase-synchronized spatial shift in Walker and Hadley cells, is accompanied by cross-equatorial northwesterly low-level flow that diverges from an area of anomalous drying in the western North Pacific and converges towards a region with anomalous moistening in the southern central Pacific. Our results show that the SST-induced concurrent spatial shifts of the two circulations are climatically relevant as they can further amplify extratropical precipitation variability on interannual timescales.


2013 ◽  
Vol 26 (13) ◽  
pp. 4710-4724 ◽  
Author(s):  
Michael Mayer ◽  
Kevin E. Trenberth ◽  
Leopold Haimberger ◽  
John T. Fasullo

Abstract The variability of zonally resolved tropical energy budgets in association with El Niño–Southern Oscillation (ENSO) is investigated. The most recent global atmospheric reanalyses from 1979 to 2011 are employed with removal of apparent discontinuities to obtain best possible temporal homogeneity. The growing length of record allows a more robust analysis of characteristic patterns of variability with cross-correlation, composite, and EOF methods. A quadrupole anomaly pattern is found in the vertically integrated energy divergence associated with ENSO, with centers over the Indian Ocean, the Indo-Pacific warm pool, the eastern equatorial Pacific, and the Atlantic. The smooth transition, particularly of the main maxima of latent and dry static energy divergence, from the western to the eastern Pacific is found to require at least two EOFs to be adequately described. The canonical El Niño pattern (EOF-1) and a transition pattern (EOF-2; referred to as El Niño Modoki by some authors) form remarkably coherent ENSO-related anomaly structures of the tropical energy budget not only over the Pacific but throughout the tropics. As latent and dry static energy divergences show strong mutual cancellation, variability of total energy divergence is smaller and more tightly coupled to local sea surface temperature (SST) anomalies and is mainly related to the ocean heat discharge and recharge during ENSO peak phases. The complexity of the structures throughout the tropics and their evolution during ENSO events along with their interactions with the annual cycle have often not been adequately accounted for; in particular, the El Niño Modoki mode is but part of the overall evolutionary patterns.


2018 ◽  
Vol 31 (3) ◽  
pp. 929-943 ◽  
Author(s):  
Fei Xie ◽  
Xin Zhou ◽  
Jianping Li ◽  
Quanliang Chen ◽  
Jiankai Zhang ◽  
...  

Abstract Time-slice experiments with the Whole Atmosphere Community Climate Model, version 4 (WACCM4), and composite analysis with satellite observations are used to demonstrate that the Indo-Pacific warm pool (IPWP) can significantly affect lower-stratospheric water vapor. It is found that a warmer IPWP significantly dries the stratospheric water vapor by causing a broad cooling of the tropopause, and vice versa for a colder IPWP. Such imprints in tropopause temperature are driven by a combination of variations in the Brewer–Dobson circulation in the stratosphere and deep convection in the troposphere. Changes in deep convection associated with El Niño–Southern Oscillation (ENSO) reportedly have a small zonal mean effect on lower-stratospheric water vapor for strong zonally asymmetric effects on tropopause temperature. In contrast, IPWP events have zonally uniform imprints on tropopause temperature. This is because equatorial planetary waves forced by latent heat release from deep convection project strongly onto ENSO but weakly onto IPWP events.


2010 ◽  
Vol 67 (10) ◽  
pp. 3097-3112 ◽  
Author(s):  
Katrina S. Virts ◽  
John M. Wallace

Abstract Cloud fields based on the first three years of data from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission are used to investigate the relationship between cirrus within the tropical tropopause transition layer (TTL) and the Madden–Julian oscillation (MJO), the annual cycle, and El Niño–Southern Oscillation (ENSO). The TTL cirrus signature observed in association with the MJO resembles convectively induced, mixed Kelvin–Rossby wave solutions above the Pacific warm pool region. This signature is centered to the east of the peak convection and propagates eastward more rapidly than the convection; it exhibits a pronounced eastward tilt with height, suggestive of downward phase propagation and upward energy dispersion. A cirrus maximum is observed over equatorial Africa and South America when the enhanced MJO-related convection enters the western Pacific. Tropical-mean TTL cirrus is modulated by the MJO, with more than twice as much TTL cirrus fractional coverage equatorward of 10° latitude when the enhanced convection enters the Pacific than a few weeks earlier, when the convection is over the Indian Ocean. The annual cycle in cirrus clouds around the base of the TTL is equatorially asymmetric, with more cirrus observed in the summer hemisphere. Higher in the TTL, the annual cycle in cirrus clouds is more equatorially symmetric, with a maximum in the boreal winter throughout most of the tropics. The ENSO signature in TTL cirrus is marked by a zonal shift of the peak cloudiness toward the central Pacific during El Niño and toward the Maritime Continent during La Niña.


2012 ◽  
Vol 25 (18) ◽  
pp. 6394-6408 ◽  
Author(s):  
Gerald A. Meehl ◽  
Julie M. Arblaster ◽  
Grant Branstator

Abstract A linear trend calculated for observed annual mean surface air temperatures over the United States for the second-half of the twentieth century shows a slight cooling over the southeastern part of the country, the so-called warming hole, while temperatures over the rest of the country rose significantly. This east–west gradient of average temperature change has contributed to the observed pattern of changes of record temperatures as given by the ratio of daily record high temperatures to record low temperatures with a comparable east–west gradient. Ensemble averages of twentieth-century climate simulations in the Community Climate System Model, version 3 (CCSM3), show a slight west–east warming gradient but no warming hole. A warming hole appears in only several ensemble members in the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel dataset and in one ensemble member of simulated twentieth-century climate in CCSM3. In this model the warming hole is produced mostly from internal decadal time-scale variability originating mainly from the equatorial central Pacific associated with the Interdecadal Pacific Oscillation (IPO). Analyses of a long control run of the coupled model, and specified convective heating anomaly experiments in the atmosphere-only version of the model, trace the forcing of the warming hole to positive convective heating anomalies in the central equatorial Pacific Ocean near the date line. Cold-air advection into the southeastern United States in winter, and low-level moisture convergence in that region in summer, contribute most to the warming hole in those seasons. Projections show a disappearance of the warming hole, but ongoing greater surface temperature increases in the western United States compared to the eastern United States.


Sign in / Sign up

Export Citation Format

Share Document