Evolution of Marine Atmospheric Boundary Layer Structure across the Cold Tongue–ITCZ Complex

2005 ◽  
Vol 18 (5) ◽  
pp. 737-753 ◽  
Author(s):  
Hollis E. Pyatt ◽  
Bruce A. Albrecht ◽  
Chris Fairall ◽  
J. E. Hare ◽  
Nicholas Bond ◽  
...  

Abstract The structure of the marine atmospheric boundary layer (MABL) over the tropical eastern Pacific Ocean is influenced by spatial variations of sea surface temperature (SST) in the region. As the MABL air is advected across a strong SST gradient associated with the cold tongue–ITCZ complex (CTIC), substantial changes occur in the thermodynamic structure, surface fluxes, and cloud properties. This study attempts to define and explain the variability in the MABL structure and clouds over the CTIC. Using data collected on research cruises from the fall seasons of 1999–2001, composite soundings were created for both the cold and warm sides of the SST front to describe the mean atmospheric boundary layer (ABL) structure and its evolution across this front. The average difference in SST across this front was ∼6°C; much of this difference was concentrated in a band only ∼50 km wide. During the fall seasons, on the cold side of the gradient, a well-defined inversion exists in all years. Below this inversion, both fair-weather cumulus and stratiform clouds are observed. As the MABL air moves over the SST front to warmer waters, the inversion weakens and increases in height. The MABL also moistens and eventually supports deeper convection over the ITCZ. Both the latent and sensible heat fluxes increase dramatically across the SST front because of both an increase in SST and surface wind speed. Cloudiness is variable on the cold side of the SST front ranging from 0.2 to 0.9 coverage. On the warm side, cloud fraction was quite constant in time, with values generally greater than 0.8. The highest cloud-top heights (>3 km) are found well north of the SST front, indicating areas of deeper convection. An analysis using energy and moisture budgets identifies the roles of various physical processes in the MABL evolution.

2021 ◽  
Author(s):  
Pierre-Etienne Brilouet ◽  
Marie Lothon ◽  
Sandrine Bony

<p>Tradewind clouds can exhibit a wide diversity of mesoscale organizations, and the turbulence of marine atmospheric boundary layer (MABL) can exhibit coherent structures and mesoscale circulations. One of the objectives of the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field experiment was to better understand the tight interplay between the mesoscale organization of clouds, boundary-layer processes, and the large-scale environment.</p><p>During the experiment, that took place East of Barbados over the Western Tropical Atlantic Ocean in Jan-Feb 2020, the French ATR-42 research aircraft was devoted to the characterization of the cloud amount and of the subcoud layer structure. <span>During its 17 research flights, </span><span>it</span> <span>sampled a </span><span>large diversity of large scale conditions and </span><span>cloud patterns</span><span>. </span>Multiple sensors onboard t<span>he aircraft measure</span><span>d</span> <span>high-frequency </span><span>fluctuations of potential temperature, water vapour mixing ratio and wind , allowing </span><span>for </span><span>an extensive characterization </span><span> of</span><span> the turbulence </span><span>within</span><span> the subcloud layer. </span> <span>A </span><span>quality-controled and calibrated turbulence data</span><span>set</span><span> was produced </span><span>on the basis of these measurements</span><span>, which is now </span><span> available on the EUREC4A AERIS data portal.</span></p><p><span>The </span><span>MABL </span><span>turbulent </span><span>structure i</span><span>s</span><span> studied </span><span>using this dataset, </span><span>through a spectral analysis </span><span>of the vertical velocity</span><span>. Vertical profiles of characteristic length scales reveal a non-isotropic structure with a stretching of the eddies along the mean wind. The organization strength of the turbulent field is also explored </span><span>by defining</span><span> a diagnostic based on the shape of the vertical velocity spectrum. </span><span>The </span><span>structure and the degree of organization of the </span><span>subcloud layer </span><span>are</span><span> characterized for </span><span> different type</span><span>s</span><span> of mesoscale </span><span>convective </span><span>pattern </span><span>and </span><span>as a function of</span><span> the large-scale environment, </span><span>including</span> <span>near-</span><span>surface wind </span><span>and</span> <span>lower-</span><span>tropospheric</span><span> stability conditions.</span></p><p> </p>


2005 ◽  
Vol 62 (2) ◽  
pp. 426-442 ◽  
Author(s):  
Simon P. de Szoeke ◽  
Christopher S. Bretherton ◽  
Nicholas A. Bond ◽  
Meghan F. Cronin ◽  
Bruce M. Morley

Abstract The atmospheric boundary layer (ABL) along 95°W in the eastern equatorial Pacific during boreal autumn is described using data from the East Pacific Investigation of Climate (EPIC) 2001, with an emphasis on the evolution of the thermodynamic ABL properties from the cold tongue to the cold-advection region north of the sea surface temperature (SST) front. Surface sensible and latent heat fluxes and wind stresses between 1°S and 12°N are calculated from data from eight NCAR C-130 research aircraft flights and from Tropical Atmosphere Ocean (TAO) buoys. Reduced surface wind speed and a 10 m s−1 jet at a height of 500 m are found over the equatorial cold tongue, demonstrating the dependence of the surface wind speed on surface stability. The ABL exhibits a maximum in cloud cover on the north (downwind) side of the warm SST front, at 1°–3°N. Turbulent mixing driven by both surface buoyancy flux and radiative cooling at the cloud tops plays a significant role in maintaining the depth and structure of the ABL. The ABL heat budget between the equator and 3°N is balanced by comparable contributions from advective cooling, radiative cooling, surface warming, and entrainment warming. Entrainment drying is a weak contributor to the moisture budget, relative to dry advection and surface evaporation. Both the heat and moisture budgets are consistent with a rapid entrainment rate, 12 ± 2 mm s−1, deduced from the observed rise of the inversion with latitude between 0° and 4°N.


2018 ◽  
Vol 176 ◽  
pp. 02012
Author(s):  
Songhua Wu ◽  
Qichao Wang ◽  
Bingyi Liu ◽  
Jintao Liu ◽  
Kailin Zhang ◽  
...  

A compact UAV-borne Coherent Doppler Lidar (UCDL) has been developed at the Ocean University of China for the observation of wind profile and boundary layer structure in Marine Atmospheric Boundary Layer (MABL). The design, specifications and motion-correction methodology of the UCDL are presented. Preliminary results of the first flight campaign in Hailing Island in December 2016 is discussed.


2019 ◽  
Vol 12 (9) ◽  
pp. 4887-4901 ◽  
Author(s):  
Yu Shi ◽  
Fei Hu ◽  
Guangqiang Fan ◽  
Zhe Zhang

Abstract. The study and control of air pollution involves measuring the structure of the atmospheric boundary layer (ABL) to understand the mechanisms of the interactions occurring between the atmospheric boundary layer and air pollution. Beijing, the capital of China, experienced heavy haze pollution in December 2016, and the city issued its first red-alert air pollution warning of the year (the highest PM2.5 concentrations were later found to exceed 450 µg m−3). In this paper, the vertical profiles of wind, temperature, humidity and the extinction coefficient (reflecting aerosol concentrations), as well as ABL heights and turbulence quantities under heavy haze pollution conditions, are analyzed, with data collected from lidar, wind profile radar (WPR), radiosondes, a 325 m meteorological tower (equipped with a 7-layer ultrasonic anemometer and 15-layer low-frequency wind, temperature, and humidity sensors) and ground observations. The ABL heights obtained by three different methods based on lidar extinction coefficient data (Hc) are compared with the heights calculated from radiosonde temperature data (Hθ), and their correlation coefficient can reach 72 %. Our results show that Hθ measured on heavy haze pollution days was generally lower than that measured on clean days without pollution, but Hc increased from clean to heavy pollution days. The time changes in friction velocity (u*) and turbulent kinetic energy (TKE) were clearly inversely correlated with PM2.5 concentration. Momentum and heat fluxes varied very little with altitude. The nocturnal sensible heat fluxes close to the Earth surface always stay positive. In the daytime of the haze pollution period, sensible heat fluxes were greatly reduced within 300 m of the ground. These findings will deepen our understanding of the boundary layer structure under heavy pollution conditions and improve the boundary layer parameterization in numerical models.


Ocean Science ◽  
2014 ◽  
Vol 10 (4) ◽  
pp. 633-644 ◽  
Author(s):  
J. M. A. C. Souza ◽  
B. Chapron ◽  
E. Autret

Abstract. The surface signature of Agulhas rings propagating across the South Atlantic Ocean is observed based on three independent data sets: Advanced Microwave Scanning Radiometer for the Earth Observing System/Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) (TMI/AMSR-E) satellite sea surface temperature, Argo profiling floats and a merged winds product derived from scatterometer observations and reanalysis results. A persistent pattern of cold (negative) sea surface temperature (SST) anomalies in the eddy core, with warm (positive) anomalies at the boundary, is revealed. This pattern contrasts with the classical idea of a warm core anticyclone. Taking advantage of a moving reference frame corresponding to the altimetry-detected Agulhas rings, modifications of the surface winds by the ocean-induced currents and SST gradients are evaluated using satellite SST and wind observations. As obtained, the averaged stationary thermal expression and mean eddy-induced circulation are coupled to the marine atmospheric boundary layer, leading to surface wind anomalies. Consequently, an average Ekman pumping associated with these mean surface wind variations consistently emerges. This average Ekman pumping is found to explain very well the SST anomaly signatures of the detected Agulhas rings. Particularly, this mechanism seems to be the key factor determining that these anticyclonic eddies exhibit stationary imprints of cold SST anomalies near their core centers. A residual phase with the maximum sea surface height (SSH) anomaly and wind speed anomaly is found to the right of the mean wind direction, apparently maintaining a coherent stationary thermal expression coupled to the marine atmospheric boundary layer.


2013 ◽  
Vol 10 (6) ◽  
pp. 2327-2361
Author(s):  
J. M. A. C. Souza ◽  
B. Chapron ◽  
E. Autret

Abstract. The surface signature of the Agulhas rings propagating across the South Atlantic Ocean is observed based on 3 independent datasets: TMI/AMSR-E satellite sea surface temperature, Argo profiling floats and a merged winds product derived from scatterometer observations and reanalysis results. A persistent pattern of cold (negative) SST anomalies in the eddy core, with warm (positive) anomalies at the boundary is revealed. This pattern contrasts with the classical idea of a warm core anti-cyclone. Taking advantage of a moving reference frame corresponding to the altimetry-detected Agulhas rings, modifications of the surface winds by the ocean induced currents and SST gradients are evaluated using satellite SST and wind observations. As obtained, the averaged stationary thermal expression and mean eddy-induced circulation are coupled to the marine atmospheric boundary layer, leading to surface wind anomalies. Consequently, an average Ekman pumping associated with these mean surface wind variations is consistently emerging. This average Ekman pumping is found to very well explain the SST anomaly signatures of the detected Agulhas rings. Particularly, this mechanism seems to be the key factor determining that these anti-cyclonic eddies exhibit stationary imprints of cold SST anomalies near their core centers. A residual phase with the maximum SSH anomaly and wind speed anomaly is found to the right of the mean wind direction, apparently maintaining a coherent stationary thermal expression coupled to the marine atmospheric boundary layer.


Sign in / Sign up

Export Citation Format

Share Document