Long-Range Predictability in the Tropics. Part I: Monthly Averages

2005 ◽  
Vol 18 (5) ◽  
pp. 619-633 ◽  
Author(s):  
Thomas Reichler ◽  
John O. Roads

Abstract The sensitivity to initial and boundary conditions of monthly mean tropical long-range forecasts (1–14 weeks) during Northern Hemisphere winter is studied with a numerical model. Five predictability experiments with different combinations of initial conditions and prescribed ocean boundary conditions are conducted in order to investigate the temporal and spatial characteristics of the perfect model forecast skill. It is shown that initial conditions dominate a tropical forecast during the first 3 weeks and that they influence a forecast for at least 8 weeks. The initial condition effect is strongest over the Eastern Hemisphere and during years when the El Niño–Southern Oscillation (ENSO) phenomenon is weak. The relatively long sensitivity to initial conditions is related to a complex combination of dynamic and thermodynamic effects, and to positive internal feedbacks of large-scale convective anomalies. At lead times of more than 3 weeks, boundary forcing is the main contributor to tropical predictability. This effect is particularly strong over the Western Hemisphere and during ENSO. Using persisted instead of observed sea surface temperatures leads to useful forecast results only over the Western Hemisphere and during ENSO.

2005 ◽  
Vol 18 (5) ◽  
pp. 634-650 ◽  
Author(s):  
Thomas Reichler ◽  
John O. Roads

Abstract It is suggested that the slow evolution of the tropical Madden–Julian oscillation (MJO) has the potential to improve the predictability of tropical and extratropical circulation systems at lead times beyond 2 weeks. In practice, however, the MJO phenomenon is extremely difficult to predict because of the lack of good observations, problems with ocean forecasts, and well-known model deficiencies. In this study, the potential skill in forecasting tropical intraseasonal variability is investigated by eliminating all those errors. This is accomplished by conducting five ensemble predictability experiments with a complex general circulation model and by verifying them under the perfect model assumption. The experiments are forced with different combinations of initial and boundary conditions to explore their sensitivity to uncertainties in those conditions. When “perfect” initial and boundary conditions are provided, the model produces a realistic climatology and variability as compared to reanalysis, although the spectral peak of the simulated MJO is too broad. The effect of initial conditions is noticeable out to about 40 days. The quality of the boundary conditions is crucial at all lead times. The small but positive correlations at very long lead times are related to intraseasonal variability of tropical sea surface temperatures (SSTs). When model, initial, and boundary conditions are all perfect, the useful forecast skill of intraseasonal variability is about 4 weeks. Predictability is insensitive to the El Niño–Southern Oscillation (ENSO) phenomenon, but it is enhanced during years when the intraseasonal oscillation is more active. The results provide evidence that the MJO must be understood as a coupled system. As a consequence, it is concluded that further progress in the long-range predictability effort may require the use of fully interactive ocean models.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3341
Author(s):  
Hui Zheng ◽  
Jin Huang ◽  
Jiadong Chen

Risk analysis using climate-induced yield losses (CIYL) extracted from long-term yield data have been recognized in China, but the research focusing on the time-series characteristics of risk and the circulation signals behind yield losses still remains incomplete. To address these challenges, a case study on winter wheat production in Henan province, north China was conducted by using annual series of yield in 17 cities during 1988–2017 and monthly series of 15 types of large-scale oceanic-atmospheric circulation indices (LOACI). A comprehensive risk assessment method was established by combining the intensity, frequency, and variability of CIYL and principal component analysis (PCA). The results showed that the westernmost Henan was identified as the area of higher-risk. PCA and Mann–Kendall trend tests indicated that the southern, northern, eastern, and western areas in Henan province were classified as having different annual CIYL variations in these four sub-regions; the decreasing trend of CIYL in northern area was the most notable. Since the 2000s, a significant decline in CIYL was found in each sub-region. It should be noted that the key LOACI, which includes Tropical Northern Atlantic Index (TNA), Western Hemisphere warm pool (WHWP), and Southern oscillation index (SOI), indicated significant CIYL anomalies in some months. Furthermore, the regional yield simulation results using linear regression for the independent variables of year and various LOACI were satisfactory, with the average relative error ranging from 3.48% to 6.87%.


2021 ◽  
Author(s):  
Raphael Köhler ◽  
Dörthe Handorf ◽  
Ralf Jaiser ◽  
Klaus Dethloff

<p>Stratospheric pathways play an important role in connecting distant anomaly patterns to each other on seasonal timescales. As long-lived stratospheric extreme events can influence the large-scale tropospheric circulation on timescales of multiple weeks, stratospheric pathways have been identified as one of the main potential sources for subseasonal to seasonal predictability in mid-latitudes. These pathways have been shown to connect Arctic anomalies to lower latitudes and vice versa. However, there is an ongoing discussion on how strong these stratospheric pathways are and how they exactly work.</p><p> </p><p>In this context, we investigate two strongly discussed stratospheric pathways by analysing a suite of seasonal experiments with the atmospheric model ICON: On the one hand, the effect of El Niño-Southern Oscillation (ENSO) on the stratospheric polar vortex, and thus the circulation in mid and high latitudes in winter. And on the other hand, the effect of a rapidly changing Arctic on lower latitudes via the stratosphere. The former effect is simulated realistically by ICON, and the results from the ensemble simulations suggest that ENSO has an effect on the large-scale Northern Hemisphere winter circulation. The ICON experiments and the reanalysis exhibit a weakened stratospheric vortex in warm ENSO years. Furthermore, in particular in winter, warm ENSO events favour the negative phase of the Arctic Oscillation, whereas cold events favour the positive phase. The ICON simulations also suggest a significant effect of ENSO on the Atlantic-European sector in late winter. Unlike the effect of ENSO, ICON simulations and the reanalysis do not agree on the stratospheric pathway for Arctic-midlatitude linkages. Whereas the reanalysis exhibits a weakening of the stratospheric vortex in midwinter and a connected tropospheric negative Arctic Oscillation circulation response to amplified Arctic warming, this is not the case in the ICON simulations. Implications and potential reasons for this discrepancy are further analysed and discussed in this work.  </p>


2021 ◽  
Author(s):  
Salva Rühling Cachay ◽  
Emma Erickson ◽  
Arthur Fender C. Bucker ◽  
Ernest Pokropek ◽  
Willa Potosnak ◽  
...  

<p>Deep learning-based models have been recently shown to be competitive with, or even outperform, state-of-the-art long range forecasting models, such as for projecting the El Niño-Southern Oscillation (ENSO). However, current deep learning models are based on convolutional neural networks which are difficult to interpret and can fail to model large-scale dependencies, such as teleconnections, that are particularly important for long range projections. Hence, we propose to explicitly model large-scale dependencies with Graph Neural Networks (GNN) to enhance explainability and improve the predictive skill of long lead time forecasts.</p><p>In preliminary experiments focusing on ENSO, our GNN model outperforms previous state-of-the-art machine learning based systems for forecasts up to 6 months ahead. The explicit modeling of information flow via edges makes our model more explainable, and it is indeed shown to learn a sensible graph structure from scratch that correlates with the ENSO anomaly pattern for a given number of lead months.</p><p> </p>


2019 ◽  
Vol 69 (1) ◽  
pp. 331
Author(s):  
David J. Martin ◽  
Skie Tobin

This is a summary of the southern hemisphere atmospheric circulation patterns and meteorological indices for austral winter 2017; an account of seasonal rainfall and temperature for the Australian region is also provided. The El Niño–Southern Oscillation was neutral during winter 2017, as was the Indian Ocean Dipole. A positive Southern Annular Mode influenced the climates of southern hemisphere countries at times during winter. Despite the lack of large-scale ocean influences, mean temperatures for the season were very much above average across large areas of Australia, New Zealand, southern Africa and South America. Precipitation during the season was below average across much of Australia, South Africa and western areas of Chile and Argentina, but above average in some southern and eastern areas of South America.


2020 ◽  
Vol 4 (41) ◽  
pp. 57-62
Author(s):  
SHAVKAT KLYCHEV ◽  
◽  
BAKHRAMOV SAGDULLA ◽  
VALERIY KHARCHENKO ◽  
VLADIMIR PANCHENKO ◽  
...  

There are needed energy (heat) accumulators to increase the efficiency of solar installations, including solar collectors (water heaters, air heaters, dryers). One of the tasks of designing heat accumulators is to ensure its minimal heat loss. The article considers the problem of determining the distribution of temperatures and heat losses by convection and radiation of the heat insulation-accumulating body (water) system for a ball heat accumulator under symmetric boundary conditions. The problem is solved numerically according to the program developed on the basis of the proposed «gap method». (Research purpose) The research purpose is in determining heat losses by convection and radiation of a two-layer ball heat accumulator with symmetric boundary conditions. (Materials and methods) Authors used the Fourier heat equation for spherical bodies. The article presents the determined boundary and initial conditions for bodies and their surfaces. (Results and discussion) The thickness of the insulation and the volume of the heat accumulator affect the dynamics and values of heat loss. The effect of increasing the thickness of the thermal insulation decreases with increasing its thickness, starting with a certain volume of the heat accumulator or with R > 0.3 meters, the heat losses change almost linearly over time. The dynamics of heat loss decreases with increasing shelf life, but the losses remain large. (Conclusions) Authors have developed a method and program for numerical calculation of heat loss and temperature over time in a spherical two-layer heat accumulator with symmetric boundary conditions, taking into account both falling and intrinsic radiation. The proposed method allows to unify the boundary conditions between contacting bodies.


Sign in / Sign up

Export Citation Format

Share Document