scholarly journals Daily, Global, High-Resolution SST and Sea Ice Reanalysis for 1985–2007 Using the OSTIA System

2012 ◽  
Vol 25 (18) ◽  
pp. 6215-6232 ◽  
Author(s):  
Jonah Roberts-Jones ◽  
Emma Kathleen Fiedler ◽  
Matthew James Martin

Abstract A sea surface temperature (SST) and sea ice reanalysis has been produced at the Met Office based on the Operational SST and Sea Ice Analysis (OSTIA) system. The OSTIA reanalysis produces daily, high-resolution, global foundation SST and sea ice concentration fields from 1 January 1985 to 31 December 2007. The SST reanalysis uses reprocessed satellite and in situ observations that are assimilated using a multiscale optimal-interpolation-type scheme similar to that used in the near-real-time OSTIA system. Validation of the SST analysis using assimilated in situ observation-minus-background statistics shows that the accuracy of the analysis increases throughout the reanalysis period; the global root-mean-square difference is approximately 0.50 K by 2007. This approach to validation is supported in the recent period by results from comparisons with independent near-surface Argo data against which a global standard deviation error of 0.55 K was calculated. Assessment of the OSTIA reanalysis at high latitudes demonstrates that the SST and sea ice fields are more consistent with one another in the Southern Hemisphere than in the Northern Hemisphere. Comparison of the sea ice extents to those in a similar reanalysis shows OSTIA to have larger extents in the Northern Hemisphere, and the Southern Hemisphere extents are similar. The OSTIA reanalysis SSTs are shown to be regionally comparable with similar reanalyses, with the largest differences occurring at high latitudes in the summer hemisphere. Differences are observed around the ice edge and in regions with high SST gradients. The OSTIA reanalysis provides a valuable high-resolution addition to the satellite period SST data record that makes use of the (Advanced) Along-Track Scanning Radiometer [(A)ATSR] multimission data.

2018 ◽  
Author(s):  
Alek A. Petty ◽  
Melinda Webster ◽  
Linette Boisvert ◽  
Thorsten Markus

Abstract. The NASA Eulerian Snow On Sea Ice Model (NESOSIM) is a new open source model that produces daily estimates of the depth and density of snow on sea ice across the polar oceans. NESOSIM has been developed in a three-dimensional Eulerian framework and includes two (vertical) snow layers and several simple parameterizations to represent the key sources and sinks of snow on sea ice. The model is forced with daily inputs of snowfall and near-surface winds (from reanalyses), sea ice concentration (from satellite passive microwave data) and sea ice drift (from satellite feature tracking), during the accumulation season (August through April). In this study, we present the NESOSIM formulation, initial calibration efforts, sensitivity studies and validation efforts across an Arctic Ocean domain (100 km horizontal resolution). The simulated snow depth and density are calibrated with in-situ data collected on drifting ice stations during the 1980s. NESOSIM demonstrates very strong agreement with the in-situ seasonal cycles of snow depth and density, and shows good (moderate) agreement with the regional snow depth (density) distributions. The results exhibit strong sensitivity to the reanalysis-derived snowfall forcing data, with the MERRA/JRA-55 (ASR) derived snow depths generally higher (lower) than ERA-Interim. We derive a new median daily snowfall dataset from these three reanalysis datasets to improve reliability in our input snowfall data. NESOSIM is run for a contemporary period (2000 to 2015) and compared against snow depth estimates derived from NASA's Operation IceBridge (OIB) snow radar data from 2009–2015, showing moderate/strong agreement, especially in the 2012–2015 comparisons.


2018 ◽  
Vol 11 (11) ◽  
pp. 4577-4602 ◽  
Author(s):  
Alek A. Petty ◽  
Melinda Webster ◽  
Linette Boisvert ◽  
Thorsten Markus

Abstract. The NASA Eulerian Snow On Sea Ice Model (NESOSIM) is a new, open-source snow budget model that is currently configured to produce daily estimates of the depth and density of snow on sea ice across the Arctic Ocean through the accumulation season. NESOSIM has been developed in a three-dimensional Eulerian framework and includes two (vertical) snow layers and several simple parameterizations (accumulation, wind packing, advection–divergence, blowing snow lost to leads) to represent key sources and sinks of snow on sea ice. The model is forced with daily inputs of snowfall and near-surface winds (from reanalyses), sea ice concentration (from satellite passive microwave data) and sea ice drift (from satellite feature tracking) during the accumulation season (August through April). In this study, we present the NESOSIM formulation, calibration efforts, sensitivity studies and validation efforts across an Arctic Ocean domain (100 km horizontal resolution). The simulated snow depth and density are calibrated with in situ data collected on drifting ice stations during the 1980s. NESOSIM shows strong agreement with the in situ seasonal cycles of snow depth and density, and shows good (moderate) agreement with the regional snow depth (density) distributions. NESOSIM is run for a contemporary period (2000 to 2015), with the results showing strong sensitivity to the reanalysis-derived snowfall forcing data, with the Modern-Era Retrospective analysis for Research and Applications (MERRA) and the Japanese Meteorological Agency 55-year reanalysis (JRA-55) forced snow depths generally higher than ERA-Interim, and the Arctic System Reanalysis (ASR) generally lower. We also generate and force NESOSIM with a consensus median daily snowfall dataset from these reanalyses. The results are compared against snow depth estimates derived from NASA's Operation IceBridge (OIB) snow radar data from 2009 to 2015, showing moderate–strong correlations and root mean squared errors of  ∼ 10 cm depending on the OIB snow depth product analyzed, similar to the comparisons between OIB snow depths and the commonly used modified Warren snow depth climatology. Potential improvements to this initial NESOSIM formulation are discussed in the hopes of improving the accuracy and reliability of these simulated snow depths and densities.


2012 ◽  
Vol 19 (3) ◽  
pp. 583-592 ◽  
Author(s):  
Yinke Dou ◽  
Xiaomin Chang

Abstract Ice thickness is one of the most critical physical indicators in the ice science and engineering. It is therefore very necessary to develop in-situ automatic observation technologies of ice thickness. This paper proposes the principle of three new technologies of in-situ automatic observations of sea ice thickness and provides the findings of laboratory applications. The results show that the in-situ observation accuracy of the monitor apparatus based on the Magnetostrictive Delay Line (MDL) principle can reach ±2 mm, which has solved the “bottleneck” problem of restricting the fine development of a sea ice thermodynamic model, and the resistance accuracy of monitor apparatus with temperature gradient can reach the centimeter level and research the ice and snow substance balance by automatically measuring the glacier surface ice and snow change. The measurement accuracy of the capacitive sensor for ice thickness can also reach ±4 mm and the capacitive sensor is of the potential for automatic monitoring the water level under the ice and the ice formation and development process in water. Such three new technologies can meet different needs of fixed-point ice thickness observation and realize the simultaneous measurement in order to accurately judge the ice thickness.


1996 ◽  
Vol 14 (4) ◽  
pp. 464-467 ◽  
Author(s):  
R. P. Kane

Abstract. The 12-month running means of the surface-to-500 mb precipitable water obtained from analysis of radiosonde data at seven selected locations showed three types of variability viz: (1) quasi-biennial oscillations; these were different in nature at different latitudes and also different from the QBO of the stratospheric tropical zonal winds; (2) decadal effects; these were prominent at middle and high latitudes and (3) linear trends; these were prominent at low latitudes, up trends in the Northern Hemisphere and downtrends in the Southern Hemisphere.


2021 ◽  
Author(s):  
Ana M. Mancho ◽  
Guillermo García-Sánchez ◽  
Antonio G. Ramos ◽  
Josep Coca ◽  
Begoña Pérez-Gómez ◽  
...  

<p>This presentation discusses a downstream application from Copernicus Services, developed in the framework of the IMPRESSIVE project, for the monitoring of  the oil spill produced after the crash of the ferry “Volcan de Tamasite” in waters of the Canary Islands on the 21<sup>st</sup> of April 2017. The presentation summarizes the findings of [1] that describe a complete monitoring of the diesel fuel spill, well-documented by port authorities. Complementary information supplied by different sources enhances the description of the event. We discuss the performance of very high resolution hydrodynamic models in the area of the Port of Gran Canaria and their ability for describing the evolution of this event. Dynamical systems ideas support the comparison of different models performance. Very high resolution remote sensing products and in situ observation validate the description.</p><p>Authors acknowledge support from IMPRESSIVE a project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 821922. SW acknowledges the support of ONR Grant No. N00014-01-1-0769</p><p><strong>References</strong></p><p>[1] G.García-Sánchez, A. M. Mancho, A. G. Ramos, J. Coca, B. Pérez-Gómez, E. Álvarez-Fanjul, M. G. Sotillo, M. García-León, V. J. García-Garrido, S. Wiggins. Very High Resolution Tools for the Monitoring and Assessment of Environmental Hazards in Coastal Areas.  Front. Mar. Sci. (2021) doi: 10.3389/fmars.2020.605804.</p>


2017 ◽  
Vol 17 (14) ◽  
pp. 8903-8922 ◽  
Author(s):  
Yang Yang ◽  
Hailong Wang ◽  
Steven J. Smith ◽  
Richard Easter ◽  
Po-Lun Ma ◽  
...  

Abstract. The global source–receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010–2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggesting that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is −0.42 W m−2, with −0.31 W m−2 contributed by anthropogenic sulfate and −0.11 W m−2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17–84 % to the total DRF. East Asia has the largest contribution of 20–30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of −0.44 W m−2. DMS has the largest contribution, explaining −0.23 W m−2 of the global sulfate incremental IRF. Incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.


2002 ◽  
Vol 2 (5) ◽  
pp. 1599-1633 ◽  
Author(s):  
M. Seifert ◽  
J. Ström ◽  
R. Krejci ◽  
A. Minikin ◽  
A. Petzold ◽  
...  

Abstract. In situ observations of aerosol particles contained in cirrus crystals are presented and compared to interstitial aerosol size distributions (non-activated particles in between the cirrus crystals). The observations were conducted in cirrus clouds in the Southern and Northern Hemisphere mid-latitudes during the INCA project. The first campaign in March and April 2000 was performed from Punta Arenas, Chile (54° S) in pristine air. The second campaign in September and October 2000 was performed from Prestwick, Scotland (53° N) in the vicinity of the North Atlantic flight corridor. Size distribution measurements of crystal residuals (particles remaining after evaporation of the crystals) show that small aerosol particles (Dp < 0.1µm) dominate the number density of residuals. The crystal residual size distributions were significantly different in the two campaigns. On average the residual size distributions were shifted towards larger sizes in the Southern Hemisphere. For a given integral residual number density, the calculated particle volume was on average three times larger in the Southern Hemisphere. This may be of significance to the vertical redistribution of aerosol mass by clouds in the tropopause region. In both campaigns the mean residual size increased with increasing crystal number density. The observations of ambient aerosol particles were consistent with the expected higher pollution level in the Northern Hemisphere. The fraction of residual particles only contributes to approximately a percent or less of the total number of particles, which is the sum of the residual and interstitial particles.


Sign in / Sign up

Export Citation Format

Share Document