scholarly journals The Climatology and Interannual Variability of the East Asian Winter Monsoon in CMIP5 Models

2014 ◽  
Vol 27 (4) ◽  
pp. 1659-1678 ◽  
Author(s):  
Hainan Gong ◽  
Lin Wang ◽  
Wen Chen ◽  
Renguang Wu ◽  
Ke Wei ◽  
...  

Abstract In this paper the model outputs from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) are used to examine the climatology and interannual variability of the East Asian winter monsoon (EAWM). The multimodel ensemble (MME) is able to reproduce reasonably well the circulation features of the EAWM. The simulated surface air temperature still suffers from a cold bias over East Asia, but this bias is reduced compared with CMIP phase 3 models. The intermodel spread is relatively small for the large-scale circulations, but is large for the lower-tropospheric meridional wind and precipitation along the East Asian coast. The interannual variability of the EAWM-related circulations can be captured by most of the models. A general bias is that the simulated variability is slightly weaker than in the observations. Based on a selected dynamic EAWM index, the patterns of the EAWM-related anomalies are well reproduced in MME although the simulated anomalies are slightly weaker than the observations. One general bias is that the northeasterly anomalies over East Asia cannot be captured to the south of 30°N. This bias may arise both from the inadequacies of the EAWM index and from the ability of models to capture the EAWM-related tropical–extratropical interactions. The ENSO–EAWM relationship is then evaluated and about half of the models can successfully capture the observed ENSO–EAWM relationship, including the significant negative correlation between Niño-3.4 and EAWM indices and the anomalous anticyclone (or cyclone) over the northwestern Pacific. The success of these models is attributed to the reasonable simulation of both ENSO’s spatial structure and its strength of interannual variability.

2017 ◽  
Vol 30 (7) ◽  
pp. 2697-2716 ◽  
Author(s):  
Xin Hao ◽  
Shengping He

Using long-term observational data and numerical model experiments, this study found that the Atlantic multidecadal oscillation (AMO) affects the influence of ENSO-like sea surface temperature anomalies (SSTAs, which contain the variability of both El Niño–Southern Oscillation and Pacific decadal oscillation) on the interannual change in the East Asian winter monsoon (EAWM). In the observations, the out-of-phase relationship between the variations in ENSO and the EAWM was significantly intensified when the AMO and ENSO-like SSTAs were in phase. Warmer-than-normal winters occurred across East Asia when the ENSO-like SSTAs and AMO were positively in phase, with a significantly weakened Siberian high and anomalous anticyclones over the western North Pacific. The opposite patterns occurred under negative in-phase conditions. In contrast, when the ENSO-like and AMO SSTAs were out of phase, the anomalies related to the EAWM tended to exhibit relatively weaker features. Numerical model experiments confirmed these observational results. When the models were perturbed with warm ENSO-like SSTAs and warm AMO SSTAs, the atmosphere showed a weakened Siberian high, strong anticyclonic anomalies over the Philippine Sea, a weakened East Asian trough, and dominant positive temperature anomalies over East Asia, implying a weaker EAWM. Reverse responses to negative in-phase temperature anomalies were observed. However, the atmospheric signals that responded to the out-of-phase conditions were less robust. This phenomenon may be attributed to the superposition of the interannual variability of the EAWM caused by ENSO-like SSTAs upon the influence of AMO on background Eurasian climate and the Walker circulation response to the heating source provided by the AMO, which induced changes in ENSO-like variability through the surface wind anomalies and modulated the anomalous anticyclone/cyclone over the Philippine Sea in warm–cold ENSO-like events.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 865
Author(s):  
Li-Huan Hsu ◽  
Dan-Rong Chen ◽  
Chou-Chun Chiang ◽  
Jung-Lien Chu ◽  
Yi-Chiang Yu ◽  
...  

The Model for Prediction Across Scales (MPAS) is used to simulate the East Asian winter monsoon (EAWM) over the 2011–2020 winter. The 45 day hindcasts are made with 30 km horizontal resolution and constructed to a time-lagged ensemble system. The climatology, the major modes of EAWM variability, and the blocking activities are examined. The evaluation results reveal that MPAS can simulate the climatologic characteristics of EAWM reasonably, with a surface cold bias of 4% and a positive rainfall bias of 9% over East Asia. MPAS can perform skillfully in the forecasts of surface temperature probability of East Asia and is more reliable in detecting below normal and above normal events. The features that influence the EAWM variability are also analyzed. MPAS simulates reasonably in the occurrence frequency of blocking high in both locations and duration time. The empirical orthogonal function analysis also shows that MPAS can capture the two major modes of the surface temperature of EAWM. On the other hand, it is also found that a biased sea surface temperature may modify the circulations over the Western Pacific and affect the simulated occurrence frequency of cold events near Taiwan during winter.


2021 ◽  
Author(s):  
Wenping Jiang ◽  
Hainan Gong ◽  
Ping Huang ◽  
Lin Wang ◽  
Gang Huang ◽  
...  

Abstract The influence of El Niño–Southern Oscillation (ENSO) on the East Asian winter monsoon (EAWM) is investigated based on the outputs of phase 6 of the Coupled Model Intercomparison Project (CMIP6) models and compared to that in phase 5 (CMIP5). Results show that the CMIP6 models generally reproduce the ENSO-EAWM teleconnection more realistically than the CMIP5 models, although they still somewhat underestimate the ENSO-EAWM teleconnection than observed. Based on the inter-model spread of ENSO-EAWM teleconnection simulated in the CMIP5/CMIP6 models, we reveal that the commonly underestimated ENSO-EAWM teleconnection among the models can be traced back to the excessive cold tongue bias in the equatorial western Pacific. A model with a stronger climatological cold tongue favors generating a more westward extension of the ENSO-related SST anomaly pattern, which in turn forces an anomalous cyclonic circulation over the Northwest Pacific (NWP). It offsets the anticyclonic anomalies in the NWP triggered by the warm ENSO-related SST anomalies in the tropical Indian Ocean and the central-eastern Pacific and weakens the ENSO-EAWM teleconnection. Compared with the CMIP5 models, CMIP6 models better simulate SST mean state and the resultant ENSO-EAWM teleconnection. The present results suggest that substantial efforts should be made to reduce the bias in the mean-state SST for further improving the simulation and projection of the East Asian-western Pacific winter climate.


2009 ◽  
Vol 5 (2) ◽  
pp. 1215-1229
Author(s):  
H. F. Zhu ◽  
X. Q. Fang ◽  
X. M. Shao ◽  
Z. Y. Yin

Abstract. Long-term climatic records are scarce in the northeast Asia for understanding the behavior of the East Asian Winter Monsoon. Here we describe a 250-year February–April temperature reconstruction (TCBM) based on tree-ring widths of Korean Pines from the Changbai Mountain area, Northeast China. The reconstruction can account for 45.7% of the temperature variance in the instrumental period (1953 to 2001). Four cold events including 1784–1815, 1827–1851, 1878–1889 and 1911–1945, and two warm events of 1750–1783 and 1855–1877 were identified before the instrumental period. Four regime shifts were also detected at 1781, 1857, 1878 and 1989. Good agreements between TCBM and other temperature records of East Asia suggest that the reconstruction is of good reliability and captures the regional cold/warm events of East Asia. Moreover, TCBM shows negative correlations with the instrumental or proxy-based EAWM intensity records. The known weakening of the EAWM in the late 1980s is in agreement with the regime shift at 1989 in TCBM. These comparisons suggest that the February–April temperature reconstruction may be a good indicator of the EAWM intensity.


Author(s):  
Qian Liu ◽  
Guixing Chen

Abstract The East Asian winter monsoon exhibits long-term variations in intensity and spatial pattern, though the latter one is less understood. To investigate the long-term spatial variations of the EAWM and their possible causes, we propose a new position index of the EAWM by quantifying the low-level East Asian stream (EAS) of cold airmass in the Lagrangian sense. Based on the new-defined index, we find that the EAS undergoes an evident zonal shift between two channels over the land and coast. At interdecadal timescale, the peak location of the EAS is displaced eastward, with an increasing southward cold airmass flux at the coast since the mid-1960s. The interannual shift of the EAS presents not only the zonal oscillation of peak location between two channels but also the width changes of coastal channel over the northwestern Pacific. These shifts in the EAS are related to the strength changes of two source cold airmass streams from Siberia or Bering Sea, which are associated with the phase changes in the upper-tropospheric atmospheric teleconnections. At interdecadal timescale, the phase change in the North Atlantic Oscillation modulates the zonal shift in the EAS via the East Atlantic-West Russia teleconnection. At interannual timescale, the Pacific/North American teleconnection becomes the dominant factor altering the zonal shift and width change of the EAS.


Sign in / Sign up

Export Citation Format

Share Document