scholarly journals Role of Tropical SST Variability on the Formation of Subtropical Dipoles

2014 ◽  
Vol 27 (12) ◽  
pp. 4486-4507 ◽  
Author(s):  
Yushi Morioka ◽  
Sébastien Masson ◽  
Pascal Terray ◽  
Chloé Prodhomme ◽  
Swadhin K. Behera ◽  
...  

Abstract Interannual variations of sea surface temperature (SST) in the midlatitudes of the Southern Hemisphere play an important role in the rainfall variability over the surrounding countries by modulating synoptic-scale atmospheric disturbances. These are frequently associated with a northeast–southwest-oriented dipole of positive and negative SST anomalies in each oceanic basin, referred to as a subtropical dipole. This study investigates the role of tropical SST variability on the generation of subtropical dipoles by conducting SST-nudging experiments using a coupled general circulation model. In the experiments where the simulated SST in each tropical basin is nudged to the climatology of the observed SST, the subtropical dipoles tend to occur as frequently as the case in which the simulated SST is allowed to freely interact with the atmosphere. It is found that without the tropical SST variability, the zonally elongated atmospheric mode in the mid- to high latitudes, called the Antarctic Oscillation (AAO), becomes dominant and the stationary Rossby waves related to the AAO induce the sea level pressure (SLP) anomalies in the midlatitudes, which, in turn, generate the subtropical dipoles. These results suggest that the tropical SST variability may not be necessary for generating the subtropical dipoles, and hence provide a useful insight into the important role of the AAO in the midlatitude climate variability.

2021 ◽  
Author(s):  
Sunil Kumar Pariyar ◽  
Noel Keenlyside ◽  
Wan-Ling Tseng ◽  
Huang Hsiung Hsu ◽  
Ben-jei Tsuang

Abstract We investigate the impact of resolving air-sea interaction on the simulation of the intraseasonal rainfall variability over the South Pacific using the ECHAM5 atmospheric general circulation model coupled with the Snow-Ice-Thermocline (SIT) ocean model. We compare the fully coupled simulation with two uncoupled ECHAM5 simulations, one forced with sea surface temperature (SST) climatology and one forced with daily SST from the coupled model. The intraseasonal rainfall variability over the South Pacific is reduced by 17% in the uncoupled model forced with SST climatology and increased by 8% in the uncoupled simulation forced with daily SST, suggesting the role of air-sea coupling and SST variability. The coupled model best simulates the key characteristics of two intraseasonal rainfall modes over the South Pacific with reasonable propagation and correct periodicity. The spatial structure of the two rainfall modes in all three simulations is very similar, suggesting these modes are primarily generated by the dynamics of the atmosphere. The southeastward propagation of rainfall anomalies associated with two leading rainfall modes in the South Pacific depends upon the eastward propagating MJO signals over the Indian Ocean and western Pacific. Air-sea interaction seems crucial for such propagation as both eastward and southeastward propagations are substantially reduced in the uncoupled model forced with SST climatology. The simulation of both eastward and southeastward propagations improved considerably in the uncoupled model forced with daily SST; however, the periodicity differs from the coupled model. Such discrepancy in the periodicity is attributed to the changes in the SST-rainfall relationship with weaker correlations and the nearly in-phase relationship.


2015 ◽  
Vol 28 (2) ◽  
pp. 678-694 ◽  
Author(s):  
Yushi Morioka ◽  
Koutarou Takaya ◽  
Swadhin K. Behera ◽  
Yukio Masumoto

Abstract The interannual variations in the summertime Mascarene high have great impacts on the southern African climate as well as the sea surface temperature (SST) in the southern Indian Ocean. A set of coupled general circulation model (CGCM) experiments are performed to examine a role of the interannual SST variability in the southern Indian Ocean on the summertime Mascarene high variability. The dominant interannual variability in the summertime Mascarene high shows the strengthening (weakening) in its southern part throughout the austral summer (December–February). However, in the experiment where the interannual SST variability in the southern Indian Ocean is suppressed, the strengthening (weakening) of the Mascarene high in its southern part does not persist until February. Also, the Mascarene high variability and its associated SST anomalies in December and January are found to increase (decrease) the southern African rainfall via more (less) moisture supply from the southern Indian Ocean. The Mascarene high variability is actually associated with a meridional dipole of positive and negative SST anomalies, which in turn produces that of the meridional SST gradient anomaly. This causes a southward (northward) shift of the storm tracks and hence the westerly jet, favoring the strengthening (weakening) of the Mascarene high in its southern part. This local ocean–atmosphere feedback effectively operates in February, when the meridional dipole of the SST anomalies reaches the maximum. These results provide new insight into the important role of the local SST variability in the summertime Mascarene high variability and hence the southern African climate.


2008 ◽  
Vol 21 (7) ◽  
pp. 1523-1531 ◽  
Author(s):  
J. C. Moore ◽  
A. Grinsted ◽  
S. Jevrejeva

Abstract Controversy exists over the role of the recent rise in sea surface temperatures (SST) and the frequency of tropical cyclones or hurricanes. Here, 135 yr of observational records are used to demonstrate how sea surface temperature, sea level pressure, and cyclone numbers are linked. A novel wavelet-lag coherence method is used to study cause and effect relations over a large space of time scales, phase lags, and periods. It is found that SST and cyclones are not merely correlated, but are in a negative feedback loop, where rising SST causes increased numbers of cyclones, which reduce SST. This is statistically most significant at decadal and not at longer periods, which is contrary to expectations if long-period natural cycles are important in driving cyclone numbers. Spatial relationships are examined using phase-aware teleconnections, which at the dominant decadal period show the in-phase behavior of the Atlantic SST in the Gulf Stream region, reflecting the role of the transportion of heat northward from the tropical Atlantic. At 5-yr periods there is significant coherence when SST leads cyclones by 2 yr, and this is associated with tropical ENSO activity such that, as predicted, increasing numbers of El Niños cause fewer Atlantic cyclones. The pattern of coherence existing since 1970 strongly favors the decadal coherence band, and despite growing coherence at higher frequencies, there is none at the 5-yr band, perhaps explaining why the observed sensitivity between SST and cyclones is larger than that from general circulation model (GCM) predictions and becoming greater.


2020 ◽  
Vol 42 ◽  
pp. e12
Author(s):  
Mariana Monteiro dos Santos Gandra ◽  
Mário Francisco Leal de Quadro

Cyclones play an important role in the general circulation of the atmosphere, enabling the meridional transport of excess heat, humidity and momentum from low latitudes to high latitudes. In the Southern Hemisphere, the area between southern Brazil and the Peninsula Antarctica (AP) is described as one of the most favorable for the formation of cyclones (30°S to 70°S) due to the existence of strong temperature gradient between the ocean and the surface air layer above the ocean and also because of pre-existing baroclinic instabilities. This study is associated with the Project ATMOS  (AnTarctic Modeling Observation System) and explored the role of extratropical cyclones in teleconnections between high and medium latitudes to track the trajectories of extratropical cyclones that are formed in the Antarctic Peninsula (AP) and move towards the central sector of the South Atlantic. The analysis of the tracked trajectories showed that the cyclones reached the central sector of the South Atlantic during the months of autumn (greater number) and winter (greater displacement), while the statistical analysis indicated that the intensity of the cyclones is more linearly linked to the mean sea level pressure field than to Superficial Sea Temperature Anomalies.


2010 ◽  
Vol 40 (5) ◽  
pp. 983-1003 ◽  
Author(s):  
Laure Zanna ◽  
Patrick Heimbach ◽  
Andrew M. Moore ◽  
Eli Tziperman

Abstract The role of ocean dynamics in optimally exciting interannual variability of tropical sea surface temperature (SST) anomalies is investigated using an idealized-geometry ocean general circulation model. Initial temperature and salinity perturbations leading to an optimal growth of tropical SST anomalies, typically arising from the nonnormal dynamics, are evaluated. The structure of the optimal perturbations is characterized by relatively strong deep salinity anomalies near the western boundary generating a transient amplification of equatorial SST anomalies in less than four years. The associated growth mechanism is linked to the excitation of coastal and equatorial Kelvin waves near the western boundary following a rapid geostrophic adjustment owing to the optimal initial temperature and salinity perturbations. The results suggest that the nonnormality of the ocean dynamics may efficiently create large tropical SST variability on interannual time scales in the Atlantic without the participation of air–sea processes or the meridional overturning circulation. An optimal deep initial salinity perturbation of 0.1 ppt located near the western boundary can result in a tropical SST anomaly of approximately 0.45°C after nearly four years, assuming the dynamics are linear. Possible mechanisms for exciting such deep perturbations are discussed. While this study is motivated by tropical Atlantic SST variability, its relevance to other basins is not excluded. The optimal initial conditions leading to the tropical SST anomalies’ growth are obtained by solving a generalized eigenvalue problem. The evaluation of the optimals is achieved by using the Massachusetts Institute of Technology general circulation model (MITgcm) tangent linear and adjoint models as well the the Arnoldi Package (ARPACK) software for solving large-scale eigenvalue problems.


2008 ◽  
Vol 8 (4) ◽  
pp. 12737-12767 ◽  
Author(s):  
P. K. Patra ◽  
M. Takigawa ◽  
G. S. Dutton ◽  
K. Uhse ◽  
K. Ishijima ◽  
...  

Abstract. We use an atmospheric general circulation model (AGCM) driven Chemistry-Transport Model (ACTM) to simulate the evolution of sulfur hexafluoride (SF6) in the atmosphere. The model results are compared with continuous measurements at 6 sites over 71° N–90° S. These comparisons demonstrate that the ACTM simulations lie within the measurement uncertainty over the analysis period (1999–2006) and capture salient features of synoptic, seasonal and interannual SF6 variability. To understand transport timescales of SF6 within the troposphere, transport times of air parcels from the surface to different regions of the troposphere ("age") are estimated from a simulation of an idealized tracer. Monthly-mean, 2-box model exchange times (τex) are calculated from both the observed and simulated SF6time series at the 6 observing sites and show favorable agreement, suggesting that the model adequately represents large-scale interhemispheric transport. The simulated SF6 variability is further investigated through decomposition of the mixing ratio time-tendency into advective, convective, and vertical diffusive components. The transport component analysis illustrates the role of each process in SF6synoptic variability at the site level and provides insight into the seasonality of τex.


2007 ◽  
Vol 20 (4) ◽  
pp. 765-771 ◽  
Author(s):  
Markus Jochum ◽  
Clara Deser ◽  
Adam Phillips

Abstract Atmospheric general circulation model experiments are conducted to quantify the contribution of internal oceanic variability in the form of tropical instability waves (TIWs) to interannual wind and rainfall variability in the tropical Pacific. It is found that in the tropical Pacific, along the equator, and near 25°N and 25°S, TIWs force a significant increase in wind and rainfall variability from interseasonal to interannual time scales. Because of the stochastic nature of TIWs, this means that climate models that do not take them into account will underestimate the strength and number of extreme events and may overestimate forecast capability.


2018 ◽  
Vol 9 (1) ◽  
pp. 285-297 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño–Southern Oscillation, weakening its amplitude and low-frequency behaviour.


2017 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to an extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a Reduced Gravity Ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of an extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics opposes the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates a strong warming in the centre-east of the basin from April to August balanced by a cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño Southern Oscillation, weakening its amplitude and low-frequency behaviour.


2000 ◽  
Vol 12 (3) ◽  
pp. 257-257 ◽  
Author(s):  
Andrew Clarke

Theodosius Dobzhansky once remarked that nothing in biology makes sense other than in the light of evolution, thereby emphasising the central role of evolutionary studies in providing the theoretical context for all of biology. It is perhaps surprising then that evolutionary biology has played such a small role to date in Antarctic science. This is particularly so when it is recognised that the polar regions provide us with an unrivalled laboratory within which to undertake evolutionary studies. The Antarctic exhibits one of the classic examples of a resistance adaptation (antifreeze peptides and glycopeptides, first described from Antarctic fish), and provides textbook examples of adaptive radiations (for example amphipod crustaceans and notothenioid fish). The land is still largely in the grip of major glaciation, and the once rich terrestrial floras and faunas of Cenozoic Gondwana are now highly depauperate and confined to relatively small patches of habitat, often extremely isolated from other such patches. Unlike the Arctic, where organisms are returning to newly deglaciated land from refugia on the continental landmasses to the south, recolonization of Antarctica has had to take place by the dispersal of propagules over vast distances. Antarctica thus offers an insight into the evolutionary responses of terrestrial floras and faunas to extreme climatic change unrivalled in the world. The sea forms a strong contrast to the land in that here the impact of climate appears to have been less severe, at least in as much as few elements of the fauna show convincing signs of having been completely eradicated.


Sign in / Sign up

Export Citation Format

Share Document