tropical sst anomalies
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 2)

MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 133-150
Author(s):  
V. KRISHNAMURTHY ◽  
J. SHUKLA

The Center for Ocean-Land-Atmosphere (COLA) general circulation model has been integrated seven times with observed global sea surface temperature (SST) for the years 1979-98. The model-simulated annual cycle, the seasonal mean and the interannual variability of the summer monsoon rainfall and circulation over the Indian region are compared with the corresponding observations. It if found that, although this model has shown remarkable success in simulating the local and global response of tropical SST anomalies, the model shows poor skill in simulating the interannual variability of monsoon rainfall over India. While it is true that the correlation between the observed tropical Pacific SST and the Indian summer monsoon rainfall for the most recent 20 years itself is considerably over India is largely related to the systematic errors of the model in simulating the climatological mean monsoon circulation and rainfall, especially over the oceanic regions.


2020 ◽  
Vol 33 (4) ◽  
pp. 1405-1421 ◽  
Author(s):  
Marisol Osman ◽  
Carolina S. Vera

AbstractThe predictability and forecast skill of the models participating in the Climate Historical Forecast Project (CHFP) database is assessed through evaluating the representation of the upper-tropospheric extratropical circulation in the Southern Hemisphere (SH) in winter and summer and its main modes of variability. In summer, the predictability of 200-hPa geopotential height anomalies mainly comes from the ability of the multimodel ensemble mean (MMEM) to forecast the first three modes of interannual variability with high fidelity. The MMEM can reproduce not only the spatial patterns of these modes but also their temporal evolution. On the other hand, in JJA only the second and fourth modes of variability are predictable by the MMEM. These seasonal differences in the performance of the MMEM seem to be related to the role that the sea surface temperature (SST) anomalies have in influencing the variability of each mode. Accordingly, modes that are strongly linked to tropical SST anomalies are better forecast by the MMEM and show less spread among models. The analysis of both 2-m temperature and precipitation anomalies in the SH associated with the predictable modes reveals that DJF predictable modes are accompanied by significant temperature anomalies. In particular, temperatures at polar (tropical) latitudes are significantly correlated with the first (second) mode. Furthermore, these links obtained with observations are also well forecast by the MMEM and can help to improve seasonal forecast of climate anomalies in those regions with low skill.


2018 ◽  
Vol 31 (18) ◽  
pp. 7337-7361 ◽  
Author(s):  
Bo Dong ◽  
Aiguo Dai ◽  
Mathias Vuille ◽  
Oliver Elison Timm

Remote influences of ENSO are known to vary with different phases of the interdecadal Pacific oscillation (IPO). Here, observational and reanalysis data from 1920 to 2014 are analyzed to present a global synthesis of the IPO’s modulation on ENSO teleconnections, followed by a modeling investigation. Regressions of surface air temperature T, precipitation P, and atmospheric circulations upon IPO and ENSO indices reveal substantial differences between ENSO and IPO teleconnections to regional T and P in terms of spatial pattern, magnitude, and seasonality. The IPO’s modulation on ENSO teleconnections asymmetrically varies with both IPO and ENSO phases. For a given ENSO phase, IPO’s modulations are not symmetric between its two phases; for a given IPO SST anomaly, its influence depends on whether it is superimposed on El Niño, La Niña, or neutral ENSO. The IPO modulations are linked to the atmospheric response to tropical SST anomalies, manifested in the local Hadley circulation and the local Walker circulation at low latitudes and the Rossby wave train in the extratropics, including the Pacific–North American (PNA) pattern in the Northern Hemisphere. A set of numerical experiments using CAM5 forced with different combinations of the IPO- and ENSO-related SSTs further shows that the asymmetric modulation arises from the nonlinear Clausius–Clapeyron relation, so that the atmospheric circulation response to the same IPO-induced SST departure is larger during a warm rather than a cold ENSO phase, and the response to a warm IPO state is larger than that to a cold IPO state. The asymmetry depends primarily on the tropical Pacific mean state and tropical SST anomalies and secondarily on extratropical SST anomalies.


Sign in / Sign up

Export Citation Format

Share Document