scholarly journals Ocean Heat Uptake Processes: A Model Intercomparison

2015 ◽  
Vol 28 (2) ◽  
pp. 887-908 ◽  
Author(s):  
Eleftheria Exarchou ◽  
Till Kuhlbrodt ◽  
Jonathan M. Gregory ◽  
Robin S. Smith

Abstract The quasi-equilibrium heat balances, as well as the responses to 4 × CO2 perturbation, are compared among three global climate models with the aim to identify and explain intermodel differences in ocean heat uptake (OHU) processes. It is found that, in quasi equilibrium, convective and mixed layer processes, as well as eddy-related processes, cause cooling of the subsurface ocean. The cooling is balanced by warming caused by advective and diapycnally diffusive processes. It is also found that in the CO2-perturbed climates the largest contribution to OHU comes from changes in vertical mixing processes and the mean circulation, particularly in the extratropics, caused both by changes in wind forcing and by changes in high-latitude buoyancy forcing. There is a substantial warming in the tropics: a significant part of which occurs because of changes in horizontal advection in extratropics. Diapycnal diffusion makes only a weak contribution to the OHU, mainly in the tropics, because of increased stratification. There are important qualitative differences in the contribution of eddy-induced advection and isopycnal diffusion to the OHU among the models. The former is related to the different values of the coefficients used in the corresponding scheme. The latter is related to the different tapering formulations of the isopycnal diffusion scheme. These differences affect the OHU in the deep ocean, which is substantial in two of the models, with the dominant region of deep warming being the Southern Ocean. However, most of the OHU takes place above 2000 m, and the three models are quantitatively similar in their global OHU efficiency and its breakdown among processes and as a function of latitude.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2015 ◽  
Vol 28 (14) ◽  
pp. 5583-5600 ◽  
Author(s):  
Jacob Scheff ◽  
Dargan M. W. Frierson

Abstract The aridity of a terrestrial climate is often quantified using the dimensionless ratio of annual precipitation (P) to annual potential evapotranspiration (PET). In this study, the climatological patterns and greenhouse warming responses of terrestrial P, Penman–Monteith PET, and are compared among 16 modern global climate models. The large-scale climatological values and implied biome types often disagree widely among models, with large systematic differences from observational estimates. In addition, the PET climatologies often differ by several tens of percent when computed using monthly versus 3-hourly inputs. With greenhouse warming, land P does not systematically increase or decrease, except at high latitudes. Therefore, because of moderate, ubiquitous PET increases, decreases (drying) are much more widespread than increases (wetting) in the tropics, subtropics, and midlatitudes in most models, confirming and expanding on earlier findings. The PET increases are also somewhat sensitive to the time resolution of the inputs, although not as systematically as for the PET climatologies. The changes in the balance between P and PET are also quantified using an alternative aridity index, the ratio , which has a one-to-one but nonlinear correspondence with . It is argued that the magnitudes of changes are more uniformly relevant than the magnitudes of changes, which tend to be much higher in wetter regions. The ratio and its changes are also found to be excellent statistical predictors of the land surface evaporative fraction and its changes.


2020 ◽  
Vol 33 (14) ◽  
pp. 5885-5903 ◽  
Author(s):  
Elinor R. Martin ◽  
Cameron R. Homeyer ◽  
Roarke A. McKinzie ◽  
Kevin M. McCarthy ◽  
Tao Xian

AbstractChanges in tropical width can have important consequences in sectors including ecosystems, agriculture, and health. Observations suggest tropical expansion over the past 30 years although studies have not agreed on the magnitude of this change. Climate model projections have also indicated an expansion and show similar uncertainty in its magnitude. This study utilizes an objective, longitudinally varying, tropopause break method to define the extent of the tropics at upper levels. The location of the tropopause break is associated with enhanced stratosphere–troposphere exchange and thus its structure influences the chemical composition of the stratosphere. The method shows regional variations in the width of the upper-level tropics in the past and future. Four modern reanalyses show significant contraction of the tropics over the eastern Pacific between 1981 and 2015, and slight but significant expansion in other regions. The east Pacific narrowing contributes to zonal mean narrowing, contradicting prior work, and is attributed to the use of monthly and zonal mean data in prior studies. Six global climate models perform well in representing the climatological location of the tropical boundary. Future projections show a spread in the width trend (from ~0.5° decade−1 of narrowing to ~0.4° decade−1 of widening), with a narrowing projected across the east Pacific and Northern Hemisphere Americas. This study illustrates that this objective tropopause break method that uses instantaneous data and does not require zonal averaging is appropriate for identifying upper-level tropical width trends and the break location is connected with local and regional changes in precipitation.


2018 ◽  
Vol 31 (13) ◽  
pp. 5205-5224 ◽  
Author(s):  
Reinel Sospedra-Alfonso ◽  
William J. Merryfield

The initialization and potential predictability of soil moisture in CanCM4 hindcasts during 1981–2010 is assessed. CanCM4 is one of the two global climate models employed by the Canadian Seasonal to Interannual Prediction System (CanSIPS) providing operational multiseasonal forecasts for Environment and Climate Change Canada (ECCC). Soil moisture forecast initialization in CanSIPS is determined by the response of the land component to forcing from data-constrained model atmospheric fields. We evaluate hindcast initial conditions for soil moisture and its atmospheric forcings against observation-based datasets. Although model values of soil moisture variability compare relatively well with a blend of two reanalysis products, there is significant disagreement in the tropics and arid regions linked to biases in precipitation, as well as in snow-covered regions, likely the result of biases in the timing of snow onset and melt. The temporal variance of initial soil moisture anomalies is typically larger in regions of considerable precipitation variability and in cold continental areas of shallow soil depth. Appreciable variance of initial conditions, combined with persistence of the initial anomalies and the model’s ability to represent future climate variations, lead to potentially predictable soil moisture variance exceeding 60% of the total variance for up to 3–4 months in the tropics and 6–7 months in the mid- to high latitudes during hemispheric winter. Potential predictability at longer leads is primarily found in the tropics and extratropical areas of ENSO-teleconnected influences. We use lagged partial correlations to show that ENSO-teleconnected precipitation in CanCM4 is a likely source of potential predictability of soil moisture up to 1-yr lead in CanSIPS hindcasts.


2020 ◽  
Author(s):  
Till Kuhlbrodt ◽  
Aurore Voldoire ◽  
Matthew Palmer ◽  
Rachel Killick ◽  
Colin Jones

<p>Ocean heat content is arguably one of the most relevant metrics for tracking global climate change and in particular the current global heating. Because of its enormous heat capacity, the global ocean stores about 93 percent of the excess heat in the Earth System. Time series of global ocean heat content (OHC) closely track Earth’s energy imbalance as observed as the net radiative balance at the top of the atmosphere. For these reasons simulated OHC time series are a cornerstone for assessing the scientific performance of Earth System models (ESM) and global climate models. Here we present a detailed analysis of the OHC change in simulations of the historical climate (20<sup>th</sup> century up to 2014) performed with four of the current, state-of-the art generation of ESMs and climate models. These four models are UKESM1, HadGEM3-GC3.1-LL, CNRM-ESM2-1 and CNRM-CM6-1. All four share the same ocean component, NEMO3.6 in the shaconemo eORCA1 configuration, and they all take part in CMIP6, the current Phase 6 of the Coupled Model Intercomparison Project. Analysing a small number of models gives us the opportunity to analyse OHC change for the global ocean as well as for individual ocean basins. In addition to the ensemble means, we focus on some individual ensemble members for a more detailed process understanding. For the global ocean, the two CNRM models reproduce the observed OHC change since the 1960s closely, especially in the top 700 m of the ocean. The two UK models (UKESM1 and HadGEM3-GC3.1-LL) do not simulate the observed global ocean warming in the 1970s and 1980s, and they warm too fast after 1991. We analyse how this varied performance across the models relates to the simulated radiative forcing of the atmosphere. All four models show a smaller ocean heat uptake since 1971, and a larger transient climate response (TCR), than the CMIP5 ensemble mean. Close analysis of a few individual ensemble members indicates a dominant role of heat uptake and deep-water formation processes in the Southern Ocean for variability and change in global OHC. Evaluating OHC change in individual ocean basins reveals that the lack of warming in the UK models stems from the Pacific and Indian basins, while in the Atlantic the OHC change 1971-2014 is close to the observed value. Resolving the ocean warming in depth and time shows that regional ocean heat uptake in the North Atlantic plays a substantial role in compensating small warming rates elsewhere. An opposite picture emerges from the CNRM models. Here the simulated OHC change is close to observations in the Pacific and Indian basins, while tending to be too small in the Atlantic, indicating a markedly different role for the Atlantic meridional overturning circulation (AMOC) and cross-equatorial heat transport in these models.</p>


2010 ◽  
Vol 23 (22) ◽  
pp. 6100-6109 ◽  
Author(s):  
Dorian S. Abbot ◽  
Ian Eisenman ◽  
Raymond T. Pierrehumbert

Abstract Sea ice schemes with a few vertical levels are typically used to simulate the thermodynamic evolution of sea ice in global climate models. Here it is shown that these schemes overestimate the magnitude of the diurnal surface temperature cycle by a factor of 2–3 when they are used to simulate tropical ice in a Snowball earth event. This could strongly influence our understanding of Snowball termination, which occurs in global climate models when the midday surface temperature in the tropics reaches the melting point. A hierarchy of models is used to show that accurate simulation of surface temperature variation on a given time scale requires that a sea ice model resolve the e-folding depth to which a periodic signal on that time scale penetrates. This is used to suggest modifications to the sea ice schemes used in global climate models that would allow more accurate simulation of Snowball deglaciation.


Author(s):  
P. A. O’Gorman ◽  
Z. Li ◽  
W. R. Boos ◽  
J. Yuval

Projections of precipitation extremes in simulations with global climate models are very uncertain in the tropics, in part because of the use of parameterizations of deep convection and model deficiencies in simulating convective organization. Here, we analyse precipitation extremes in high-resolution simulations that are run without a convective parameterization on a quasi-global aquaplanet. The frequency distributions of precipitation rates and precipitation cluster sizes in the tropics of a control simulation are similar to the observed distributions. In response to climate warming, 3 h precipitation extremes increase at rates of up to 9 %   K − 1 in the tropics because of a combination of positive thermodynamic and dynamic contributions. The dynamic contribution at different latitudes is connected to the vertical structure of warming using a moist static stability. When the precipitation rates are first averaged to a daily timescale and coarse-grained to a typical global climate-model resolution prior to calculating the precipitation extremes, the response of the precipitation extremes to warming becomes more similar to what was found previously in coarse-resolution aquaplanet studies. However, the simulations studied here do not exhibit the high rates of increase of tropical precipitation extremes found in projections with some global climate models. This article is part of a discussion meeting issue ‘Intensification of short-duration rainfall extremes and implications for flash flood risks’.


2018 ◽  
Vol 52 (5-6) ◽  
pp. 2775-2797 ◽  
Author(s):  
Sylvain Marchi ◽  
Thierry Fichefet ◽  
Hugues Goosse ◽  
Violette Zunz ◽  
Steffen Tietsche ◽  
...  

2017 ◽  
Vol 30 (15) ◽  
pp. 5885-5900 ◽  
Author(s):  
Matthew D. Thomas ◽  
Alexey V. Fedorov

Global climate models frequently exhibit cold biases in tropical sea surface temperature (SST) in the central and eastern equatorial Pacific. Here, Lagrangian particle back trajectories are used to investigate the source regions of the water that upwells along the equator in the IPSL climate model to test and confirm the hypothesis that the SST biases are caused by remote biases advected in from the extratropics and to identify the dominant source regions. Water in the model is found to be sourced primarily from localized regions along the western and eastern flanks of the subtropical gyres. However, while the model SST bias is especially large in the northwestern subtropical Pacific (about −5°C), it is found that the eastern subtropics contribute to the equatorial bias the most. This is due to two distinct subsurface pathways connecting these regions to the equator. The first pathway, originating in the northwestern subtropical Pacific, has relatively long advection time scales close to or exceeding 60 yr, wherein particles recirculate around the subtropical gyres while descending to approximately 500 m before then shoaling toward the equatorial undercurrent. The second pathway, from the eastern subtropics, has time scales close to 10 yr, with particles following a shallow and more direct route to the equator within the upper 200 m. The deeper and longer pathway taken by the western subtropical water ensures that vertical mixing can erode the bias. Ultimately, it is estimated that relatively confined regions in the eastern subtropics of both hemispheres control approximately half of the equatorial bias.


2011 ◽  
Vol 2 (2) ◽  
pp. 213-221 ◽  
Author(s):  
A. Jarvis

Abstract. Because of the fundamental role feedbacks play in determining the response of surface temperature to perturbations in radiative forcing, it is important we understand the dynamic characteristics of these feedbacks. Rather than attribute the aggregate surface temperature feedback to particular physical processes, this paper adopts a linear systems approach to investigate the partitioning with respect to the timescale of the feedbacks regulating global mean surface temperature in climate models. The analysis reveals that there is a dominant net negative feedback realised on an annual timescale and that this is partially attenuated by a spectrum of positive feedbacks with characteristic timescales in the range 10 to 1000 yr. This attenuation was composed of two discrete phases which are attributed to the equilibration of "diffusive – mixed layer" and "circulatory – deep ocean" ocean heat uptake. The diffusive equilibration was associated with time constants on the decadal timescale and accounted for approximately 75 to 80 percent of the overall ocean heat feedback, whilst the circulatory equilibration operated on a centennial timescale and accounted for the remaining 20 to 25 percent of the response. This suggests that the dynamics of the transient ocean heat uptake feedback first discussed by Baker and Roe (2009) tends to be dominated by loss of diffusive heat uptake in climate models, rather than circulatory deep ocean heat equilibration.


Sign in / Sign up

Export Citation Format

Share Document