Historical ocean heat uptake in CMIP6 Earth System models: global and regional perspectives

Author(s):  
Till Kuhlbrodt ◽  
Aurore Voldoire ◽  
Matthew Palmer ◽  
Rachel Killick ◽  
Colin Jones

<p>Ocean heat content is arguably one of the most relevant metrics for tracking global climate change and in particular the current global heating. Because of its enormous heat capacity, the global ocean stores about 93 percent of the excess heat in the Earth System. Time series of global ocean heat content (OHC) closely track Earth’s energy imbalance as observed as the net radiative balance at the top of the atmosphere. For these reasons simulated OHC time series are a cornerstone for assessing the scientific performance of Earth System models (ESM) and global climate models. Here we present a detailed analysis of the OHC change in simulations of the historical climate (20<sup>th</sup> century up to 2014) performed with four of the current, state-of-the art generation of ESMs and climate models. These four models are UKESM1, HadGEM3-GC3.1-LL, CNRM-ESM2-1 and CNRM-CM6-1. All four share the same ocean component, NEMO3.6 in the shaconemo eORCA1 configuration, and they all take part in CMIP6, the current Phase 6 of the Coupled Model Intercomparison Project. Analysing a small number of models gives us the opportunity to analyse OHC change for the global ocean as well as for individual ocean basins. In addition to the ensemble means, we focus on some individual ensemble members for a more detailed process understanding. For the global ocean, the two CNRM models reproduce the observed OHC change since the 1960s closely, especially in the top 700 m of the ocean. The two UK models (UKESM1 and HadGEM3-GC3.1-LL) do not simulate the observed global ocean warming in the 1970s and 1980s, and they warm too fast after 1991. We analyse how this varied performance across the models relates to the simulated radiative forcing of the atmosphere. All four models show a smaller ocean heat uptake since 1971, and a larger transient climate response (TCR), than the CMIP5 ensemble mean. Close analysis of a few individual ensemble members indicates a dominant role of heat uptake and deep-water formation processes in the Southern Ocean for variability and change in global OHC. Evaluating OHC change in individual ocean basins reveals that the lack of warming in the UK models stems from the Pacific and Indian basins, while in the Atlantic the OHC change 1971-2014 is close to the observed value. Resolving the ocean warming in depth and time shows that regional ocean heat uptake in the North Atlantic plays a substantial role in compensating small warming rates elsewhere. An opposite picture emerges from the CNRM models. Here the simulated OHC change is close to observations in the Pacific and Indian basins, while tending to be too small in the Atlantic, indicating a markedly different role for the Atlantic meridional overturning circulation (AMOC) and cross-equatorial heat transport in these models.</p>

2014 ◽  
Vol 27 (5) ◽  
pp. 1945-1957 ◽  
Author(s):  
John M. Lyman ◽  
Gregory C. Johnson

Abstract Ocean heat content anomalies are analyzed from 1950 to 2011 in five distinct depth layers (0–100, 100–300, 300–700, 700–900, and 900–1800 m). These layers correspond to historic increases in common maximum sampling depths of ocean temperature measurements with time, as different instruments—mechanical bathythermograph (MBT), shallow expendable bathythermograph (XBT), deep XBT, early sometimes shallower Argo profiling floats, and recent Argo floats capable of worldwide sampling to 2000 m—have come into widespread use. This vertical separation of maps allows computation of annual ocean heat content anomalies and their sampling uncertainties back to 1950 while taking account of in situ sampling advances and changing sampling patterns. The 0–100-m layer is measured over 50% of the globe annually starting in 1956, the 100–300-m layer starting in 1967, the 300–700-m layer starting in 1983, and the deepest two layers considered here starting in 2003 and 2004, during the implementation of Argo. Furthermore, global ocean heat uptake estimates since 1950 depend strongly on assumptions made concerning changes in undersampled or unsampled ocean regions. If unsampled areas are assumed to have zero anomalies and are included in the global integrals, the choice of climatological reference from which anomalies are estimated can strongly influence the global integral values and their trend: the sparser the sampling and the bigger the mean difference between climatological and actual values, the larger the influence.


2017 ◽  
Vol 30 (23) ◽  
pp. 9343-9363 ◽  
Author(s):  
Richard G. Williams ◽  
Vassil Roussenov ◽  
Philip Goodwin ◽  
Laure Resplandy ◽  
Laurent Bopp

Climate projections reveal global-mean surface warming increasing nearly linearly with cumulative carbon emissions. The sensitivity of surface warming to carbon emissions is interpreted in terms of a product of three terms: the dependence of surface warming on radiative forcing, the fractional radiative forcing from CO2, and the dependence of radiative forcing from CO2 on carbon emissions. Mechanistically each term varies, respectively, with climate sensitivity and ocean heat uptake, radiative forcing contributions, and ocean and terrestrial carbon uptake. The sensitivity of surface warming to fossil-fuel carbon emissions is examined using an ensemble of Earth system models, forced either by an annual increase in atmospheric CO2 or by RCPs until year 2100. The sensitivity of surface warming to carbon emissions is controlled by a temporal decrease in the dependence of radiative forcing from CO2 on carbon emissions, which is partly offset by a temporal increase in the dependence of surface warming on radiative forcing. The decrease in the dependence of radiative forcing from CO2 is due to a decline in the ratio of the global ocean carbon undersaturation to carbon emissions, while the increase in the dependence of surface warming is due to a decline in the ratio of ocean heat uptake to radiative forcing. At the present time, there are large intermodel differences in the sensitivity in surface warming to carbon emissions, which are mainly due to uncertainties in the climate sensitivity and ocean heat uptake. These uncertainties undermine the ability to predict how much carbon may be emitted before reaching a warming target.


2013 ◽  
Vol 26 (2) ◽  
pp. 609-621 ◽  
Author(s):  
Maria A. A. Rugenstein ◽  
Michael Winton ◽  
Ronald J. Stouffer ◽  
Stephen M. Griffies ◽  
Robert Hallberg

Abstract Climate models simulate a wide range of climate changes at high northern latitudes in response to increased CO2. They also have substantial disagreement on projected changes of the Atlantic meridional overturning circulation (AMOC). Here, two pairs of closely related climate models are used, with each containing members with large and small AMOC declines to explore the influence of AMOC decline on the high-latitude response to increased CO2. The models with larger AMOC decline have less high-latitude warming and sea ice decline than their small AMOC decline counterpart. By examining differences in the perturbation heat budget of the 40°–90°N region, it is shown that AMOC decline diminishes the warming by weakening poleward ocean heat transport and increasing the ocean heat uptake. The cooling impact of this AMOC-forced surface heat flux perturbation difference is enhanced by shortwave feedback and diminished by longwave feedback and atmospheric heat transport differences. The magnitude of the AMOC decline within model pairs is positively related to the magnitudes of control climate AMOC and Labrador and Nordic Seas convection. Because the 40°–90°N region accounts for up to 40% of the simulated global ocean heat uptake over 100 yr, the process described here influences the global heat uptake efficiency.


2012 ◽  
Vol 93 (4) ◽  
pp. 485-498 ◽  
Author(s):  
Karl E. Taylor ◽  
Ronald J. Stouffer ◽  
Gerald A. Meehl

The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades and the future to year 2035. These “decadal predictions” are initialized based on observations and will be used to explore the predictability of climate and to assess the forecast system's predictive skill. The CMIP5 experiment design also allows for participation of stand-alone atmospheric models and includes a variety of idealized experiments that will improve understanding of the range of model responses found in the more complex and realistic simulations. An exceptionally comprehensive set of model output is being collected and made freely available to researchers through an integrated but distributed data archive. For researchers unfamiliar with climate models, the limitations of the models and experiment design are described.


2021 ◽  
Author(s):  
Maurice Huguenin ◽  
Ryan Holmes ◽  
Matthew England

<p>Uptake and storage of heat by the ocean plays a critical role in modulating the Earth's climate system. In the last 50 years, the ocean has absorbed over 90% of the additional energy accumulating in the Earth system due to radiative imbalance. However, our knowledge about ocean heat uptake (OHU), transport and storage is strongly constrained by the sparse observational record with large uncertainties. In this study, we conduct a suite of historical 1972–2017 hindcast simulations using a global ocean-sea ice model that are specifically designed to account for a cold start climate and model drift. The hindcast simulations are initialised from an equilibrated control simulation that uses repeat decade forcing over the period 1962-1971. This repeat decade forcing approach is a compromise between an early unobserved period (where our confidence in the forcing is low) and later periods (which would result in a shorter experiment period and a smaller fraction of the total OHU). The simulations are aimed at giving a good estimate of the trajectory of OHU in the tropics, the extratropics and individual ocean basins in recent decades. Many modelling studies that look at recent OHU rates so far use a simpler approach for the forcing. For example, they use repeating cycles of 1950-2010 Coordinated Ocean Reference Experiment (CORE) forcing that is consistent with the Ocean Model Intercomparison Project 2 (OMIP-2). However, this approach cannot account for model drift. The new simulations here highlight the dominant role of the extratropics, and in particular the Southern Ocean in OHU. In contrast, little heat is absorbed in the tropics and simulations forced with only tropical trends in atmospheric forcing show only weak global ocean heat content trends. Almost 50% of the heat taken up from the atmosphere in the Southern Ocean is transported into the Atlantic Ocean. Two-thirds of this Southern Ocean-sourced heat is then subsequently lost to the atmosphere in the North Atlantic but nevertheless this basin gains heat overall. Our results help to estimate the large-scale cycling of anthropogenic heat within the ocean today and have implications for heat content trends under a changing climate.</p>


2016 ◽  
Vol 29 (20) ◽  
pp. 7507-7527 ◽  
Author(s):  
Oluwayemi A. Garuba ◽  
Barry A. Klinger

Abstract Global warming induces ocean circulation changes that not only can redistribute ocean reservoir temperature stratification but also change the total heat content anomaly of the ocean. Here all consequences of this process are referred to collectively as “redistribution.” Previous model studies of redistributive effects could not measure the net global contribution to the amount of ocean heat uptake by redistribution. In this study, a global ocean model experiment with abrupt increase in surface temperature is conducted with a new passive tracer formulation. This separates ocean heat uptake into contributions due to redistribution temperature and surface heat flux anomalies and those due to the passive advection and mixing of surface heat flux anomalies forced in the atmosphere. For a decline in the Atlantic meridional overturning circulation of about 40%, redistribution nearly doubles the Atlantic passive anomalous surface heat input and depth penetration of temperature anomalies. However, smaller increases in the Indian and Pacific Oceans cause the net global redistributive contribution to be only 25% of the passive contribution. Despite the much larger anomalous surface heat input in the Atlantic, the Pacific gains heat content anomaly similar to that in the Atlantic because of export from the Atlantic and Indian Oceans via the global conveyor belt. Of this interbasin heat transport, most of the passive component comes from the Indian Ocean and the redistributive component comes from the Atlantic.


Climate ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 91 ◽  
Author(s):  
Lijing Cheng ◽  
Gongjie Wang ◽  
John Abraham ◽  
Gang Huang

Ocean heat content (OHC) is the major component of the earth’s energy imbalance. Its decadal scale variability has been heavily debated in the research interest of the so-called “surface warming slowdown” (SWS) that occurred during the 1998–2013 period. Here, we first clarify that OHC has accelerated since the late 1990s. This finding refutes the concept of a slowdown of the human-induced global warming. This study also addresses the question of how heat is redistributed within the global ocean and provides some explanation of the underlying physical phenomena. Previous efforts to answer this question end with contradictory conclusions; we show that the systematic errors in some OHC datasets are partly responsible for these contradictions. Using an improved OHC product, the three-dimensional OHC changes during the SWS period are depicted, related to a reference period of 1982–1997. Several “hot spots” and “cold spots” are identified, showing a significant decadal-scale redistribution of ocean heat, which is distinct from the long-term ocean-warming pattern. To provide clues for the potential drivers of the OHC changes during the SWS period, we examine the OHC changes related to the key climate modes by regressing the Pacific Decadal Oscillation (PDO), El Niño-Southern Oscillation (ENSO), and Atlantic Multi-decadal Oscillation (AMO) indices onto the de-trended gridded OHC anomalies. We find that no single mode can fully explain the OHC change patterns during the SWS period, suggesting that there is not a single “pacemaker” for the recent SWS. Our observation-based analyses provide a basis for further understanding the mechanisms of the decadal ocean heat uptake and evaluating the climate models.


2021 ◽  
Author(s):  
Ric Williams ◽  
Paulo Ceppi ◽  
Anna Katavouta

<p>The controls of a climate metric, the Transient Climate Response to cumulative carbon Emissions (TCRE), are assessed using a suite of Earth system models, 9 CMIP6 and 7 CMIP5, following an annual 1% rise in atmospheric CO2 over 140 years. The TCRE is interpreted in terms of a product of three dependences: (i) a thermal response involving the surface warming dependence on radiative forcing (including the effects of physical climate feedbacks and planetary heat uptake), (ii) a radiative response involving the radiative forcing dependence on changes in atmospheric carbon and (iii) a carbon response involving the airborne fraction (involving terrestrial and ocean carbon uptake). The near constancy of the TCRE is found to result primarily from a compensation between two factors: (i) the thermal response strengthens  in time from more surface warming per radiative forcing due to a strengthening in surface warming from short-wave cloud feedbacks and a declining effectiveness of ocean heat uptake, while  (ii) the radiative response weakens in time due to a saturation in the radiative forcing with increasing atmospheric carbon. This near constancy of the TCRE at least in complex Earth system models appears to be rather fortuitous given the competing effects of physical climate feedbacks, saturation in radiative forcing, changes in ocean heat uptake and changes in terrestrial and ocean carbon uptake.</p><p>Intermodel differences in the TCRE are mainly controlled by the thermal response, which arise through large differences in physical climate feedbacks that are only partly compensated by smaller differences in ocean heat uptake. The other contributions to the TCRE from the radiative and carbon responses are of comparable importance to the contribution from the thermal response on timescales of 50 years and longer for our subset of CMIP5 models, and 100 years and longer for our subset of CMIP6 models.</p><p> </p>


2015 ◽  
Vol 28 (2) ◽  
pp. 887-908 ◽  
Author(s):  
Eleftheria Exarchou ◽  
Till Kuhlbrodt ◽  
Jonathan M. Gregory ◽  
Robin S. Smith

Abstract The quasi-equilibrium heat balances, as well as the responses to 4 × CO2 perturbation, are compared among three global climate models with the aim to identify and explain intermodel differences in ocean heat uptake (OHU) processes. It is found that, in quasi equilibrium, convective and mixed layer processes, as well as eddy-related processes, cause cooling of the subsurface ocean. The cooling is balanced by warming caused by advective and diapycnally diffusive processes. It is also found that in the CO2-perturbed climates the largest contribution to OHU comes from changes in vertical mixing processes and the mean circulation, particularly in the extratropics, caused both by changes in wind forcing and by changes in high-latitude buoyancy forcing. There is a substantial warming in the tropics: a significant part of which occurs because of changes in horizontal advection in extratropics. Diapycnal diffusion makes only a weak contribution to the OHU, mainly in the tropics, because of increased stratification. There are important qualitative differences in the contribution of eddy-induced advection and isopycnal diffusion to the OHU among the models. The former is related to the different values of the coefficients used in the corresponding scheme. The latter is related to the different tapering formulations of the isopycnal diffusion scheme. These differences affect the OHU in the deep ocean, which is substantial in two of the models, with the dominant region of deep warming being the Southern Ocean. However, most of the OHU takes place above 2000 m, and the three models are quantitatively similar in their global OHU efficiency and its breakdown among processes and as a function of latitude.


2012 ◽  
Vol 25 (19) ◽  
pp. 6646-6665 ◽  
Author(s):  
John P. Dunne ◽  
Jasmin G. John ◽  
Alistair J. Adcroft ◽  
Stephen M. Griffies ◽  
Robert W. Hallberg ◽  
...  

Abstract The physical climate formulation and simulation characteristics of two new global coupled carbon–climate Earth System Models, ESM2M and ESM2G, are described. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory’s previous Climate Model version 2.1 (CM2.1) while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4p1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in El Niño–Southern Oscillation being overly strong in ESM2M and overly weak in ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to total heat content variability given its lack of long-term drift, gyre circulation, and ventilation in the North Pacific, tropical Atlantic, and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to surface circulation given its superior surface temperature, salinity, and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. The overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon–climate models.


Sign in / Sign up

Export Citation Format

Share Document