Roles of Barotropic Convective Momentum Transport in the Intraseasonal Oscillation*

2015 ◽  
Vol 28 (12) ◽  
pp. 4908-4920 ◽  
Author(s):  
Fei Liu ◽  
Bin Wang ◽  
In-Sik Kang

Abstract Both observational data analysis and model simulations suggest that convective momentum transport (CMT) by cumulus convection may play a significant role in the intraseasonal oscillations (ISO) by redistributing atmospheric momentum vertically through fast convective mixing process. The authors present a simple theoretical model for the ISO by parameterizing the cumulus momentum transport process in which the CMT tends to produce barotropic wind anomalies that will affect the frictional planetary boundary layer (PBL). In the model with equatorial easterly vertical wind shear (VWS), it is found that the barotropic CMT tends to select most unstable planetary-scale waves because CMT suppresses the equatorial Ekman pumping of short waves, which reduces the shortwave instability from the PBL moisture convergence and accelerates the shortwave propagation. The model with subtropical easterly VWS has behavior that can be qualitatively different from the model with equatorial easterly VWS and has robust northward propagation. The basic mechanism of this northward propagation is that the CMT accelerates the barotropic cyclonic wind to the north of ISO, which will enhance the precipitation by PBL Ekman pumping and favor the northward propagation. The simulated northward propagation is sensitive to the strength and location of the seasonal-mean easterly VWS. These results suggest that accurate simulation of the climatological-mean state is critical for reproducing the realistic ISO in general circulation models.

2005 ◽  
Vol 18 (7) ◽  
pp. 952-972 ◽  
Author(s):  
Hae-Kyung Lee Drbohlav ◽  
Bin Wang

Abstract The propagation and initiation mechanisms of the boreal summer intraseasonal oscillation (BSISO) in the south Asian summer monsoon are examined with a zonally symmetric atmospheric model. In the axially symmetric model the effects of zonally propagating atmospheric waves are intentionally excluded. The model specifies mean flows and depicts the lowest baroclinic mode and a barotropic mode in the free troposphere. The two vertical modes are coupled by the time-mean vertical wind shear. The model atmosphere produces a 15–20-day oscillation, which is characterized by northward propagation of convection from south of the equator to the Indian monsoon trough region and a reinitiation of convection in the region between 10°S and the equator. The northward propagation in the model is produced by the free troposphere barotropic divergence, which leads convection by about a quarter of a cycle. The vertical advection of summer-mean easterly vertical wind shear by perturbation vertical motion inside the convective region induces barotropic divergence (convergence) to the north (south) of convection. This barotropic divergence triggers the moisture convergence in the boundary layer to the north of convection, causing the northward propagation of precipitation. The development of convection in the Southern Hemisphere near the equator is also produced by the development of the barotropic divergence in the free troposphere. When the BSISO convection is located in the Indian monsoon trough region, it creates Hadley-type anomalous circulation. This Hadley-type circulation interacts with the monsoon flow through the meridional and vertical advections creating anomalous barotropic divergence and boundary layer convergence.


1995 ◽  
Vol 43 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Anatoly V. Lozhkin ◽  
Patricia M. Anderson

AbstractAlluvial, fluvial, and organic deposits of the last interglaciation are exposed along numerous river terraces in northeast Siberia. Although chronological control is often poor, the paleobotanical data suggest range extensions of up to 1000 km for the primary tree species. These data also indicate that boreal communities of the last interglaciation were similar to modern ones in composition, but their distributions were displaced significantly to the north-northwest. Inferences about climate of this period suggest that mean July temperatures were warmer by 4 to 8°C, and seasonal precipitation was slightly greater. Mean January temperatures may have been severely cooler than today (up to 12°C) along the Arctic coast, but similar or slightly warmer than present in other areas. The direction and magnitude of change in July temperatures agree with Atmospheric General Circulation Models, but the 126,000-year-B.P. model results also suggest trends opposite to the paleobotanical data, with simulated cooler winter temperatures and drier conditions than present during the climatic optimum.


2006 ◽  
Vol 134 (2) ◽  
pp. 664-674 ◽  
Author(s):  
Jongil Han ◽  
Hua-Lu Pan

Abstract A parameterization of the convection-induced pressure gradient force (PGF) in convective momentum transport (CMT) is tested for hurricane intensity forecasting using NCEP's operational Global Forecast System (GFS) and its nested Regional Spectral Model (RSM). In the parameterization the PGF is assumed to be proportional to the product of the cloud mass flux and vertical wind shear. Compared to control forecasts using the present operational GFS and RSM where the PGF effect in CMT is taken into account empirically, the new PGF parameterization helps increase hurricane intensity by reducing the vertical momentum exchange, giving rise to a closer comparison to the observations. In addition, the new PGF parameterization forecasts not only show more realistically organized precipitation patterns with enhanced hurricane intensity but also reduce the forecast track error. Nevertheless, the model forecasts with the new PGF parameterization still largely underpredict the observed intensity. One of the many possible reasons for the large underprediction may be the absence of hurricane initialization in the models.


2018 ◽  
Vol 31 (14) ◽  
pp. 5437-5459 ◽  
Author(s):  
Hui Ding ◽  
Matthew Newman ◽  
Michael A. Alexander ◽  
Andrew T. Wittenberg

Seasonal forecasts made by coupled atmosphere–ocean general circulation models (CGCMs) undergo strong climate drift and initialization shock, driving the model state away from its long-term attractor. Here we explore initializing directly on a model’s own attractor, using an analog approach in which model states close to the observed initial state are drawn from a “library” obtained from prior uninitialized CGCM simulations. The subsequent evolution of those “model-analogs” yields a forecast ensemble, without additional model integration. This technique is applied to four of the eight CGCMs comprising the North American Multimodel Ensemble (NMME) by selecting from prior long control runs those model states whose monthly tropical Indo-Pacific SST and SSH anomalies best resemble the observations at initialization time. Hindcasts are then made for leads of 1–12 months during 1982–2015. Deterministic and probabilistic skill measures of these model-analog hindcast ensembles are comparable to those of the initialized NMME hindcast ensembles, for both the individual models and the multimodel ensemble. In the eastern equatorial Pacific, model-analog hindcast skill exceeds that of the NMME. Despite initializing with a relatively large ensemble spread, model-analogs also reproduce each CGCM’s perfect-model skill, consistent with a coarse-grained view of tropical Indo-Pacific predictability. This study suggests that with little additional effort, sufficiently realistic and long CGCM simulations provide the basis for skillful seasonal forecasts of tropical Indo-Pacific SST anomalies, even without sophisticated data assimilation or additional ensemble forecast integrations. The model-analog method could provide a baseline for forecast skill when developing future models and forecast systems.


Ocean Science ◽  
2011 ◽  
Vol 7 (3) ◽  
pp. 389-404 ◽  
Author(s):  
I. Medhaug ◽  
T. Furevik

Abstract. Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850–2000 as part of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s–1950s) and the following colder period (1960s–1980s). This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13–24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.


2018 ◽  
Vol 11 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Matthew J. Widlansky ◽  
H. Annamalai ◽  
Stephen B. Gingerich ◽  
Curt D. Storlazzi ◽  
John J. Marra ◽  
...  

Abstract Potential changing climate threats in the tropical and subtropical North Pacific Ocean were assessed, using coupled ocean–atmosphere and atmosphere-only general circulation models, to explore their response to projected increasing greenhouse gas emissions. Tropical cyclone occurrence, described by frequency and intensity, near islands housing major U.S. defense installations was the primary focus. Four island regions—Guam and Kwajalein Atoll in the tropical northwestern Pacific, Okinawa in the subtropical northwestern Pacific, and Oahu in the tropical north-central Pacific—were considered, as they provide unique climate and geographical characteristics that either enhance or reduce the tropical cyclone risk. Guam experiences the most frequent and severe tropical cyclones, which often originate as weak systems close to the equator near Kwajalein and sometimes track far enough north to affect Okinawa, whereas intense storms are the least frequent around Oahu. From assessments of models that simulate well the tropical Pacific climate, it was determined that, with a projected warming climate, the number of tropical cyclones is likely to decrease for Guam and Kwajalein but remain about the same near Okinawa and Oahu; however, the maximum intensity of the strongest storms may increase in most regions. The likelihood of fewer but stronger storms will necessitate new localized assessments of the risk and vulnerabilities to tropical cyclones in the North Pacific.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 429 ◽  
Author(s):  
Snehlata Tirkey ◽  
P. Mukhopadhyay ◽  
R. Phani Murali Krishna ◽  
Ashish Dhakate ◽  
Kiran Salunke

In the present study, we analyze the Climate Forecast System version 2 (CFSv2) model in three resolutions, T62, T126, and T382. We evaluated the performance of all three resolutions of CFSv2 in simulating the Monsoon Intraseasonal Oscillation (MISO) of the Indian summer monsoon (ISM) by analyzing a suite of dynamic and thermodynamic parameters. Results reveal a slower northward propagation of MISO in all models with the characteristic northwest–southeast tilted rain band missing over India. The anomalous moisture convergence and vorticity were collocated with the convection center instead of being northwards. This affected the northward propagation of MISO. The easterly shear to the north of the equator was better simulated by the coarser resolution models than CFS T382. The low level specific humidity showed improvement only in CFS T382 until ~15° N. The analyses of the vertical profiles of moisture and its relation to rainfall revealed that all CFSv2 resolutions had a lower level of moisture in the lower level (< 850 hPa) and a drier level above. This eventually hampered the growth of deep convection in the model. These model shortcomings indicate a possible need of improvement in moist process parameterization in the model in tune with the increase in resolution.


2012 ◽  
Vol 69 (9) ◽  
pp. 2749-2758 ◽  
Author(s):  
Fei Liu ◽  
Bin Wang

Abstract The Madden–Julian oscillation (MJO) is a multiscale system. A skeleton model, developed by Majda and Stechmann, can capture some of planetary-scale aspects of observed features such as slow eastward propagation, nondispersive behavior, and quadrupole-vortex structure. However, the Majda–Stechmann model cannot explain the source of instability and the preferred planetary scale of the MJO. Since the MJO major convection region is leaded by its planetary boundary layer (PBL) moisture convergence, here a frictional skeleton model is built by implementing a slab PBL into the neutral skeleton model. As a skeleton model allowing the scale interaction, this model is only valid for large-scale waves. This study shows that the PBL frictional convergence provides a strong instability source for the long eastward modes, although it also destabilizes very short westward modes. For the long waves (wavenumber less than 5), the PBL Ekman pumping moistens the low troposphere to the east of the MJO convective envelope, and sets up favorable moist conditions to destabilize the MJO and favor only eastward modes. Sensitivity experiments show that a weak PBL friction will enhance the instability slightly. The sea surface temperature (SST) with a maximum at the equator also prefers the long eastward modes. These theoretical analysis results encourage further observations on the PBL regulation of mesosynoptic-scale motions, and exploration of the interaction between PBL and multiscale motions, associated with the MJO to improve the MJO simulation in general circulation models (GCMs).


Sign in / Sign up

Export Citation Format

Share Document