scholarly journals Quantifying Agulhas Leakage in a High-Resolution Climate Model

2016 ◽  
Vol 29 (19) ◽  
pp. 6881-6892 ◽  
Author(s):  
Yu Cheng ◽  
Dian Putrasahan ◽  
Lisa Beal ◽  
Ben Kirtman

Abstract The leakage of warm and salty water from the Indian Ocean via the Agulhas system into the South Atlantic may play a critical role in climate variability by modulating the buoyancy fluxes associated with the meridional overturning circulation (MOC). New climate models, such as the Community Climate System Model, version 3.5 (CCSM3.5), are now able to resolve the Agulhas retroflection and constrain the inertially choked Agulhas leakage to more realistic values. These ocean-eddy-resolving climate models are poised to bolster understanding of the sensitivity and influence of Agulhas leakage in the coupled climate system. Here, a strategy is devised to quantify Agulhas leakage in CCSM3.5 by applying an offline Lagrangian particle-tracking approach, finding a mean interbasin transport of 11.2 Sv (1 Sv ≡ 106 m3 s−1). It is shown that monthly mean outputs can be used to produce a reliable time series of Agulhas leakage variability on longer-than-seasonal time scales (correlation coefficient r = 0.88; p < 0.01) by comparing to a parallel simulation that archives daily mean fields every 5 days. The results show that Agulhas leakage variability at longer-than-seasonal time scales is less sensitive to the temporal resolution of the velocity fields than is the mean leakage transport.

2018 ◽  
Vol 31 (12) ◽  
pp. 4727-4743 ◽  
Author(s):  
Wei Liu ◽  
Jian Lu ◽  
Shang-Ping Xie ◽  
Alexey Fedorov

Climate models show that most of the anthropogenic heat resulting from increased atmospheric CO2 enters the Southern Ocean near 60°S and is stored around 45°S. This heat is transported to the ocean interior by the meridional overturning circulation (MOC) with wind changes playing an important role in the process. To isolate and quantify the latter effect, we apply an overriding technique to a climate model and decompose the total ocean response to CO2 increase into two major components: one due to wind changes and the other due to direct CO2 effect. We find that the poleward-intensified zonal surface winds tend to shift and strengthen the ocean Deacon cell and hence the residual MOC, leading to anomalous divergence of ocean meridional heat transport around 60°S coupled to a surface heat flux increase. In contrast, at 45°S we see anomalous convergence of ocean heat transport and heat loss at the surface. As a result, the wind-induced ocean heat storage (OHS) peaks at 46°S at a rate of 0.07 ZJ yr−1 (° lat)−1 (1 ZJ = 1021 J), contributing 20% to the total OHS maximum. The direct CO2 effect, on the other hand, very slightly alters the residual MOC but primarily warms the ocean. It induces a small but nonnegligible change in eddy heat transport and causes OHS to peak at 42°S at a rate of 0.30 ZJ yr−1 (° lat)−1, accounting for 80% of the OHS maximum. We also find that the eddy-induced MOC weakens, primarily caused by a buoyancy flux change as a result of the direct CO2 effect, and does not compensate the intensified Deacon cell.


2012 ◽  
Vol 5 (2) ◽  
pp. 313-319 ◽  
Author(s):  
Z. Song ◽  
F. Qiao ◽  
X. Lei ◽  
C. Wang

Abstract. This paper investigates the impact of the parallel computational uncertainty due to the round-off error on climate simulations using the Community Climate System Model Version 3 (CCSM3). A series of sensitivity experiments have been conducted and the analyses are focused on the Global and Nino3.4 average sea surface temperatures (SST). For the monthly time series, it is shown that the amplitude of the deviation induced by the parallel computational uncertainty is the same order as that of the climate system change. However, the ensemble mean method can reduce the influence and the ensemble member number of 15 is enough to ignore the uncertainty. For climatology, the influence can be ignored when the climatological mean is calculated by using more than 30-yr simulations. It is also found that the parallel computational uncertainty has no distinguishable effect on power spectrum analysis of climate variability such as ENSO. Finally, it is suggested that the influence of the parallel computational uncertainty on Coupled General Climate Models (CGCMs) can be a quality standard or a metric for developing CGCMs.


2014 ◽  
Vol 27 (1) ◽  
pp. 411-425 ◽  
Author(s):  
Frank O. Bryan ◽  
Peter R. Gent ◽  
Robert Tomas

Abstract Present-day control and 1% yr−1 increasing carbon dioxide runs have been made using two versions of the Community Climate System Model, version 3.5. One uses the standard versions of the ocean and sea ice components where the horizontal resolution is 1° and the effects of mesoscale eddies are parameterized, and the second uses a resolution of 1/10° where the eddies are resolved. This is the first time the parameterization has been tested in a climate change run compared to an eddy-resolving run. The comparison is made not straightforward by the fact that the two control run climates are not the same, especially in their sea ice distributions. The focus is on the Antarctic Circumpolar Current region, where the effects of eddies are of leading order. The conclusions are that many of the differences in the two carbon dioxide transient forcing runs can be explained by the different control run sea ice distributions around Antarctica, but there are some quantitative differences in the meridional overturning circulation, poleward heat transport, and zonally averaged heat uptake when the eddies are parameterized rather than resolved.


2016 ◽  
Vol 29 (14) ◽  
pp. 5267-5280 ◽  
Author(s):  
Laurie Trenary ◽  
Timothy DelSole

Abstract This paper investigates the predictive relation between the Atlantic multidecadal oscillation (AMO) and Atlantic meridional overturning circulation across different climate models. Three overturning patterns that are significantly coupled to the AMO on interannual time scales across all climate models are identified using a statistical optimization technique. Including these structures in an autoregressive model extends AMO predictability by 2–9 years, relative to an autoregressive model without these structures.


2012 ◽  
Vol 3 (1) ◽  
pp. 279-323 ◽  
Author(s):  
D. Rothenberg ◽  
N. Mahowald ◽  
K. Lindsay ◽  
S. C. Doney ◽  
J. K. Moore ◽  
...  

Abstract. Volcanic eruptions induce a dynamical response in the climate system characterized by short-term, global reductions in both surface temperature and precipitation, as well as a response in biogeochemistry. The available observations of these responses to volcanic eruptions, such as to Pinatubo, provide a valuable method to compare against model simulations. Here, the Community Climate System Model Version 3 (CCSM3) reproduces the physical climate response to volcanic eruptions in a realistic way, as compared to direct observations from the 1991 eruption of Mount Pinatubo. The model biogeochemical response to eruptions is smaller in magnitude than observed, but because of the lack observations, it is not clear why or where the modeled carbon response is not strong enough. Comparison to other models suggests that this model response is much weaker in the tropical land; however the precipitation response in other models is not accurate, suggesting that other models could be getting the right response for the wrong reason. The underestimated carbon response in the model compared to observations could also be due to the ash and lava input of biogeochemical important species to the ocean, which are not included in the simulation. A statistically significant reduction in the simulated carbon dioxide growth rate is seen at the 90% level in the average of 12 large eruptions over the period 1870–2000, and the net uptake of carbon is primarily concentrated in the tropics with large spatial variability. In addition, a method for computing the volcanic response in model output without using a control ensemble is tested against a traditional methodology using two separate ensembles of runs; the method is found to produce similar results. These results suggest that not only is simulating volcanoes a good test of coupled carbon-climate models, but also that this test can be performed without a control simulation in cases where it is not practical to run separate ensembles with and without volcanic eruptions.


2011 ◽  
Vol 24 (3) ◽  
pp. 624-640 ◽  
Author(s):  
Camille Marini ◽  
Claude Frankignoul ◽  
Juliette Mignot

Abstract The links between the atmospheric southern annular mode (SAM), the Southern Ocean, and the Atlantic meridional overturning circulation (AMOC) at interannual to multidecadal time scales are investigated in a 500-yr control integration of the L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL CM4) climate model. The Antarctic Circumpolar Current, as described by its transport through the Drake Passage, is well correlated with the SAM at the yearly time scale, reflecting that an intensification of the westerlies south of 45°S leads to its acceleration. Also in phase with a positive SAM, the global meridional overturning circulation is modified in the Southern Hemisphere, primarily reflecting a forced barotropic response. In the model, the AMOC and the SAM are linked at several time scales. An intensification of the AMOC lags a positive SAM by about 8 yr. This is due to a correlation between the SAM and the atmospheric circulation in the northern North Atlantic that reflects a symmetric ENSO influence on the two hemispheres, as well as an independent, delayed interhemispheric link driven by the SAM. Both effects lead to an intensification of the subpolar gyre and, by salinity advection, increased deep convection and a stronger AMOC. A slower oceanic link between the SAM and the AMOC is found at a multidecadal time scale. Salinity anomalies generated by the SAM enter the South Atlantic from the Drake Passage and, more importantly, the Indian Ocean; they propagate northward, eventually reaching the northern North Atlantic where, for a positive SAM, they decrease the vertical stratification and thus increase the AMOC.


2021 ◽  
Author(s):  
Laura Jackson

<p>The Atlantic Meridional Overturning Circulation (AMOC) influences our climate by transporting heat northwards in the Atlantic ocean. The subpolar North Atlantic plays an important role in this circulation, with transformation of water to higher densities, deep convection and formation of deep water. Recent OSNAP observations have shown that the overturning is stronger to the east of Greenland than the west.</p><p>Here we analyse a CMIP6 climate model at two resolutions (HadGEM3 GC3.1 LL and MM) and show both compare well with the OSNAP observations. We explore the source of low frequency variability of the AMOC and how it is related to the surface water mass transformation in different regions. We also investigate time-mean and low frequency water mass transformations in other CMIP6 climate models.</p>


2011 ◽  
Vol 4 (4) ◽  
pp. 3295-3312
Author(s):  
Z. Song ◽  
F. Qiao ◽  
X. Lei ◽  
C. Wang

Abstract. This paper investigates the impact of the parallel computational uncertainty on climate simulations using the Community Climate System Model Version 3 (CCSM3). A series of sensitivity experiments have been conducted and the analyses are focused on the Global and Nino3.4 sea surface temperatures. It is shown that the amplitude of the deviation induced by the parallel computational uncertainty is the same order as that of the climate system change. However, the ensemble mean method can reduce the influence and the ensemble member number of 15 is enough to ignore simulated errors. For climatology, the influence can be ignored when the climatological mean is calculated by using more than 30-yr simulations. It is also found that the parallel computational uncertainty has no effect on the simulated periods of climate variability such as ENSO. Finally, it is suggested that the influence of the parallel computational uncertainty on Coupled General Climate Models (CGCMs) can be a quality standard or a metric for developing CGCMs.


2008 ◽  
Vol 21 (9) ◽  
pp. 1891-1910 ◽  
Author(s):  
L. Mark Berliner ◽  
Yongku Kim

Abstract The authors develop statistical data models to combine ensembles from multiple climate models in a fashion that accounts for uncertainty. This formulation enables treatment of model specific means, biases, and covariance matrices of the ensembles. In addition, the authors model the uncertainty in using computer model results to estimate true states of nature. Based on these models and principles of decision making in the presence of uncertainty, this paper poses the problem of superensemble experimental design in a quantitative fashion. Simple examples of the resulting optimal designs are presented. The authors also provide a Bayesian climate modeling and forecasting analysis. The climate variables of interest are Northern and Southern Hemispheric monthly averaged surface temperatures. A Bayesian hierarchical model for these quantities is constructed, including time-varying parameters that are modeled as random variables with distributions depending in part on atmospheric CO2 levels. This allows the authors to do Bayesian forecasting of temperatures under different Special Report on Emissions Scenarios (SRES). These forecasts are based on Bayesian posterior distributions of the unknowns conditional on observational data for 1882–2001 and climate system model output for 2002–97. The latter dataset is a small superensemble from the Parallel Climate Model (PCM) and the Community Climate System Model (CCSM). After summarizing the results, the paper concludes with discussion of potential generalizations of the authors’ strategies.


2020 ◽  
Author(s):  
Emma L. Worthington ◽  
Ben I. Moat ◽  
David A. Smeed ◽  
Jennifer V. Mecking ◽  
Robert Marsh ◽  
...  

Abstract. A decline in Atlantic meridional overturning circulation (AMOC) strength has been observed between 2004 and 2012 by the RAPID array with this weakened state of the AMOC persisting until 2017. Climate model and paleo-oceanographic research suggests that the AMOC may have been declining for decades or even centuries before this, however direct observations are sparse prior to 2004, giving only snapshots of the overturning circulation. Previous studies have used linear models based on upper layer temperature anomalies to extend AMOC estimates back in time, however these ignore changes in the deep circulation that are beginning to emerge in the observations of AMOC decline. Here we develop a higher fidelity empirical model of AMOC variability based on RAPID data, and associated physically with changes in thickness of the persistent upper, intermediate and deep water masses at 26° N and associated transports. We applied historical hydrographic data to the empirical model to create an AMOC time series extending from 1981 to 2016. Increasing the resolution of the observed AMOC to approximately annual shows multi-annual variability in agreement with RAPID observations, and that the downturn between 2008 and 2012 was the weakest AMOC since the mid-1980s. However, the time series shows no overall AMOC decline as indicated by other proxies and high resolution climate models. Our results reinforce that adequately capturing changes to the deep circulation is key to detecting any anthropogenic climate change-related AMOC decline.


Sign in / Sign up

Export Citation Format

Share Document