The Non-Gaussianity and Spatial Asymmetry of Temperature Extremes Relative to the Storm Track: The Role of Horizontal Advection

2017 ◽  
Vol 30 (2) ◽  
pp. 445-464 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Nili Harnik

The distribution of near-surface and tropospheric temperature variability in midlatitudes is distinguishable from a Gaussian in meteorological reanalysis data; consistent with this, warm extremes occur preferentially poleward of the location of cold extremes. To understand the factors that drive this non-Gaussianity, a dry general circulation model and a simple model of Lagrangian temperature advection are used to investigate the connections between dynamical processes and the occurrence of extreme temperature events near the surface. The non-Gaussianity evident in reanalysis data is evident in the dry model experiments, and the location of extremes is influenced by the location of the jet stream and storm track. The cause of this in the model can be traced back to the synoptic evolution within the storm track leading up to cold and warm extreme events: negative temperature extremes occur when an equatorward propagating high–low couplet (high to the west) strongly advects isotherms equatorward over a large meridional fetch over more than two days. Positive temperature anomalies occur when a poleward propagating low–high couplet (low to the west) advects isotherms poleward over a large meridional fetch over more than two days. The magnitude of the extremes is enhanced by the meridional movement of the systems. Overall, horizontal temperature advection by storm track systems can account for the warm/cold asymmetry in the latitudinal distribution of the temperature extremes.

2007 ◽  
Vol 4 (5) ◽  
pp. 3413-3440 ◽  
Author(s):  
E. P. Maurer ◽  
H. G. Hidalgo

Abstract. Downscaling of climate model data is essential to most impact analysis. We compare two methods of statistical downscaling to produce continuous, gridded time series of precipitation and surface air temperature at a 1/8-degree (approximately 140 km² per grid cell) resolution over the western U.S. We use NCEP/NCAR Reanalysis data from 1950–1999 as a surrogate General Circulation Model (GCM). The two methods included are constructed analogues (CA) and a bias correction and spatial downscaling (BCSD), both of which have been shown to be skillful in different settings, and BCSD has been used extensively in hydrologic impact analysis. Both methods use the coarse scale Reanalysis fields of precipitation and temperature as predictors of the corresponding fine scale fields. CA downscales daily large-scale data directly and BCSD downscales monthly data, with a random resampling technique to generate daily values. The methods produce comparable skill in producing downscaled, gridded fields of precipitation and temperatures at a monthly and seasonal level. For daily precipitation, both methods exhibit some skill in reproducing both observed wet and dry extremes and the difference between the methods is not significant, reflecting the general low skill in daily precipitation variability in the reanalysis data. For low temperature extremes, the CA method produces greater downscaling skill than BCSD for fall and winter seasons. For high temperature extremes, CA demonstrates higher skill than BCSD in summer. We find that the choice of most appropriate downscaling technique depends on the variables, seasons, and regions of interest, on the availability of daily data, and whether the day to day correspondence of weather from the GCM needs to be reproduced for some applications. The ability to produce skillful downscaled daily data depends primarily on the ability of the climate model to show daily skill.


2021 ◽  
Author(s):  
Martin Wegmann ◽  
Yvan Orsolini ◽  
Antje Weisheimer ◽  
Bart van den Hurk ◽  
Gerrit Lohmann

<p>As the leading climate mode to explain wintertime climate variability over Europe, the North Atlantic Oscillation (NAO) has been extensively studied over the last decades. Recently, studies highlighted the state of the Northern Hemispheric cryosphere as possible predictor for the wintertime NAO (Cohen et al. 2014). Although several studies could find seasonal prediction skill in reanalysis data (Orsolini et al. 2016, Duville et al. 2017,Han & Sun 2018), experiments with ocean-atmosphere general circulation models (AOGCMs) still show conflicting results (Furtado et al. 2015, Handorf et al. 2015, Francis 2017, Gastineau et al. 2017). </p><p>Here we use two kinds ECMWF seasonal prediction ensembles starting with November initial conditions taken from the long-term reanalysis ERA-20C and forecasting the following three winter months. Besides the 110-year ensemble of 50 members representing internal variability of the atmosphere, we investigate a second ensemble of 20 members where initial conditions are split between low and high snow cover years for the Northern Hemisphere. We compare two recently used Eurasian snow cover indices for their skill in predicting winter climate for the European continent. Analyzing the two forecast experiments, we found that prediction runs starting with high snow index values in November result in significantly more negative NAO states in the following winter (DJF), which in turn modulates near surface temperatures. We track the atmospheric anomalies triggered by the high snow index through the tropo- and stratosphere as well as for the individual winter months to provide a physical explanation for the formation of this particular climate state.</p><p> </p>


2017 ◽  
Vol 8 (2) ◽  
pp. 295-312 ◽  
Author(s):  
Valerio Lembo ◽  
Isabella Bordi ◽  
Antonio Speranza

Abstract. Seasonal variability in near-surface air temperature and baroclinicity from the ECMWF ERA-Interim (ERAI) reanalysis and six coupled atmosphere–ocean general circulation models (AOGCMs) participating in the Coupled Model Intercomparison Project phase 3 and 5 (CMIP3 and CMIP5) are examined. In particular, the annual and semiannual cycles of hemispherically averaged fields are studied using spectral analysis. The aim is to assess the ability of coupled general circulation models to properly reproduce the observed amplitude and phase of these cycles, and investigate the relationship between near-surface temperature and baroclinicity (coherency and relative phase) in such frequency bands. The overall results of power spectra agree in displaying a statistically significant peak at the annual frequency in the zonally averaged fields of both hemispheres. The semiannual peak, instead, shows less power and in the NH seems to have a more regional character, as is observed in the North Pacific Ocean region. Results of bivariate analysis for such a region and Southern Hemisphere midlatitudes show some discrepancies between ERAI and model data, as well as among models, especially for the semiannual frequency. Specifically, (i) the coherency at the annual and semiannual frequency observed in the reanalysis data is well represented by models in both hemispheres, and (ii) at the annual frequency, estimates of the relative phase between near-surface temperature and baroclinicity are bounded between about ±15° around an average value of 220° (i.e., approximately 1-month phase shift), while at the semiannual frequency model phases show a wider dispersion in both hemispheres with larger errors in the estimates, denoting increased uncertainty and some disagreement among models. The most recent CMIP climate models (CMIP5) show several improvements when compared with CMIP3, but a degree of discrepancy still persists though masked by the large errors characterizing the semiannual frequency. These findings contribute to better characterizing the cyclic response of current global atmosphere–ocean models to the external (solar) forcing that is of interest for seasonal forecasts.


2011 ◽  
Vol 50 (2) ◽  
pp. 379-398 ◽  
Author(s):  
Axel Andersson ◽  
Christian Klepp ◽  
Karsten Fennig ◽  
Stephan Bakan ◽  
Hartmut Grassl ◽  
...  

Abstract Today, latent heat flux and precipitation over the global ocean surface can be determined from microwave satellite data as a basis for estimating the related fields of the ocean surface freshwater flux. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) is the only generally available satellite-based dataset with consistently derived global fields of both evaporation and precipitation and hence of freshwater flux for the period 1987–2005. This paper presents a comparison of the evaporation E, precipitation P, and the resulting freshwater flux E − P in HOAPS with recently available reference datasets from reanalysis and other satellite observation projects as well as in situ ship measurements. In addition, the humidity and wind speed input parameters for the evaporation are examined to identify sources for differences between the datasets. Results show that the general climatological patterns are reproduced by all datasets. Global mean time series often agree within about 10% of the individual products, while locally larger deviations may be found for all parameters. HOAPS often agrees better with the other satellite-derived datasets than with the in situ or the reanalysis data. The agreement usually improves in regions of good in situ sampling statistics. The biggest deviations of the evaporation parameter result from differences in the near-surface humidity estimates. The precipitation datasets exhibit large differences in highly variable regimes with the largest absolute differences in the ITCZ and the largest relative biases in the extratropical storm-track regions. The resulting freshwater flux estimates exhibit distinct differences in terms of global averages as well as regional biases. In comparison with long-term mean global river runoff data, the ocean surface freshwater balance is not closed by any of the compared fields. The datasets exhibit a positive bias in E − P of 0.2–0.5 mm day−1, which is on the order of 10% of the evaporation and precipitation estimates.


2013 ◽  
Vol 43 (10) ◽  
pp. 2071-2094 ◽  
Author(s):  
Ali Belmadani ◽  
Nikolai A. Maximenko ◽  
Julian P. Mccreary ◽  
Ryo Furue ◽  
Oleg V. Melnichenko ◽  
...  

Abstract Two numerical ocean models are used to study the baroclinic response to forcing by localized wind stress curl (i.e., a wind-forced β plume, which is a circulation cell developing to the west of the source region and composed of a set of zonal jets) with implications for the Hawaiian Lee Countercurrent (HLCC): an idealized primitive equation model [Regional Ocean Modeling System (ROMS)], and a global, eddy-resolving, general circulation model [Ocean General Circulation Model for the Earth Simulator (OFES)]. In addition, theoretical ideas inferred from a linear continuously stratified model are used to interpret results. In ROMS, vertical mixing preferentially damps higher-order vertical modes. The damping thickens the plume to the west of the forcing region, weakening the near-surface zonal jets and generating deeper zonal currents. The zonal damping scale increases monotonically with the meridional forcing scale, indicating a dominant role of vertical viscosity over diffusion, a consequence of the small forcing scale. In the OFES run forced by NCEP reanalysis winds, the HLCC has a vertical structure consistent with that of idealized β plumes simulated by ROMS, once the contribution of the North Equatorial Current (NEC) has been removed. Without this filtering, a deep HLCC branch appears artificially separated from the surface branch by the large-scale intermediate-depth NEC. The surface HLCC in two different OFES runs exhibits sensitivity to the meridional wind curl scale that agrees with the dynamics of a β plume in the presence of vertical viscosity. The existence of a deep HLCC extension is also suggested by velocities of Argo floats.


2019 ◽  
Vol 76 (4) ◽  
pp. 1055-1076 ◽  
Author(s):  
Cheikh O. Mbengue ◽  
Tim Woollings

Abstract Simulations using a dry, idealized general circulation model (GCM) are conducted to systematically investigate the eddy-driven jet’s sensitivity to the location of boundary layer drag. Perturbations of boundary layer drag solely within the baroclinic zone reproduce the eddy-driven jet responses to global drag variations. The implications for current theories of eddy-driven jet shifts are discussed. Hemispherically asymmetric drag simulations in equinoctial and solstitial thermal conditions show that perturbations of surface drag in one hemisphere have negligible effects on the strength and latitude of the eddy-driven jet in the opposite hemisphere. Jet speed exhibits larger sensitivities to surface drag in perpetual winter simulations, while sensitivities in jet latitude are larger in perpetual summer simulations. Near-surface drag simulations with an Earthlike continental profile show how surface drag may facilitate tropical–extratropical teleconnections by modifying waveguides through changes in jet latitude. Longitudinally confined drag simulations demonstrate a novel mechanism for localizing storm tracks. A theoretical analysis is used to show that asymmetries in the Bernoulli function within the baroclinic zone are important for the eddy-driven jet latitude responses because they directly modulate the sensitivity of the zonal-mean zonal wind to drag in the boundary layer momentum balance. The simulations contained herein provide a rich array of case studies against which to test current theories of eddy-driven jet and storm-track shifts, and the results affirm the importance of correct, well-constrained locations and intensities of boundary layer drag in order to reduce jet and storm-track biases in climate and forecast models.


2008 ◽  
Vol 12 (2) ◽  
pp. 551-563 ◽  
Author(s):  
E. P. Maurer ◽  
H. G. Hidalgo

Abstract. Downscaling of climate model data is essential to local and regional impact analysis. We compare two methods of statistical downscaling to produce continuous, gridded time series of precipitation and surface air temperature at a 1/8-degree (approximately 140 km2 per grid cell) resolution over the western U.S. We use NCEP/NCAR Reanalysis data from 1950–1999 as a surrogate General Circulation Model (GCM). The two methods included are constructed analogues (CA) and a bias correction and spatial downscaling (BCSD), both of which have been shown to be skillful in different settings, and BCSD has been used extensively in hydrologic impact analysis. Both methods use the coarse scale Reanalysis fields of precipitation and temperature as predictors of the corresponding fine scale fields. CA downscales daily large-scale data directly and BCSD downscales monthly data, with a random resampling technique to generate daily values. The methods produce generally comparable skill in producing downscaled, gridded fields of precipitation and temperatures at a monthly and seasonal level. For daily precipitation, both methods exhibit limited skill in reproducing both observed wet and dry extremes and the difference between the methods is not significant, reflecting the general low skill in daily precipitation variability in the reanalysis data. For low temperature extremes, the CA method produces greater downscaling skill than BCSD for fall and winter seasons. For high temperature extremes, CA demonstrates higher skill than BCSD in summer. We find that the choice of most appropriate downscaling technique depends on the variables, seasons, and regions of interest, on the availability of daily data, and whether the day to day correspondence of weather from the GCM needs to be reproduced for some applications. The ability to produce skillful downscaled daily data depends primarily on the ability of the climate model to show daily skill.


2010 ◽  
Vol 23 (7) ◽  
pp. 1793-1814 ◽  
Author(s):  
Takeaki Sampe ◽  
Hisashi Nakamura ◽  
Atsushi Goto ◽  
Wataru Ohfuchi

Abstract In a set of idealized “aquaplanet” experiments with an atmospheric general circulation model to which zonally uniform sea surface temperature (SST) is prescribed globally as the lower boundary condition, an assessment is made of the potential influence of the frontal SST gradient upon the formation of a storm track and an eddy-driven midlatitude polar front jet (PFJ), and on its robustness against changes in the intensity of a subtropical jet (STJ). In experiments with the frontal midlatitude SST gradient as that observed in the southwestern Indian Ocean, transient eddy activity in each of the winter and summer hemispheres is organized into a deep storm track along the SST front with an enhanced low-level baroclinic growth of eddies. In the winter hemisphere, another storm track forms just below the intense STJ core, but it is confined to the upper troposphere with no significant baroclinic eddy growth underneath. The near-surface westerlies are strongest near the midlatitude SST front as observed, consistent with westerly momentum transport associated with baroclinic eddy growth. The sharp poleward decline in the surface sensible heat flux across the SST frontal zone sustains strong near-surface baroclinicity against the relaxing effect by vigorous poleward eddy heat transport. Elimination of the midlatitude frontal SST gradient yields marked decreases in the activity of eddies and their transport of angular momentum into midlatitudes, in association with equatorward shifts of the PFJ-associated low-level westerlies and a subtropical high pressure belt, especially in the summer hemisphere. These impacts of the midlatitude frontal SST gradient are found to be robust against modest changes in the STJ intensity as observed in its interannual variability, suggesting the potential importance of midlatitude atmosphere–ocean interaction in shaping the tropospheric general circulation.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Annette Rinke ◽  
John J. Cassano ◽  
Elizabeth N. Cassano ◽  
Ralf Jaiser ◽  
Dörthe Handorf

This article sets the near-surface meteorological conditions during the Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition in the context of the interannual variability and extremes within the past 4 decades. Hourly ERA5 reanalysis data for the Polarstern trajectory for 1979–2020 are analyzed. The conditions were relatively normal given that they were mostly within the interquartile range of the preceding 4 decades. Nevertheless, some anomalous and even record-breaking conditions did occur, particularly during synoptic events. Extreme cases of warm, moist air transported from the northern North Atlantic or northwestern Siberia into the Arctic were identified from late fall until early spring. Daily temperature and total column water vapor were classified as being among the top-ranking warmest/wettest days or even record-breaking based on the full record. Associated with this, the longwave radiative fluxes at the surface were extremely anomalous for these winter cases. The winter and spring period was characterized by more frequent storm events and median cyclone intensity ranking in the top 25th percentile of the full record. During summer, near melting point conditions were more than a month longer than usual, and the July and August 2020 mean conditions were the all-time warmest and wettest. These record conditions near the Polarstern were embedded in large positive temperature and moisture anomalies over the whole central Arctic. In contrast, unusually cold conditions occurred during the beginning of November 2019 and in early March 2020, related to the Arctic Oscillation. In March, this was linked with anomalously strong and persistent northerly winds associated with frequent cyclone occurrence to the southeast of the Polarstern.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoru Okajima ◽  
Hisashi Nakamura ◽  
Yohai Kaspi

AbstractMigratory cyclones and anticyclones account for most of the day-to-day weather variability in the extratropics. These transient eddies act to maintain the midlatitude jet streams by systematically transporting westerly momentum and heat. Yet, little is known about the separate contributions of cyclones and anticyclones to their interaction with the westerlies. Here, using a novel methodology for identifying cyclonic and anticyclonic vortices based on curvature, we quantify their separate contributions to atmospheric energetics and their feedback on the westerly jet streams as represented in Eulerian statistics. We show that climatological westerly acceleration by cyclonic vortices acts to dominantly reinforce the wintertime eddy-driven near-surface westerlies and associated cyclonic shear. Though less baroclinic and energetic, anticyclones still play an important role in transporting westerly momentum toward midlatitudes from the upper-tropospheric thermally driven jet core and carrying eddy energy downstream. These new findings have uncovered essential characteristics of atmospheric energetics, storm track dynamics and eddy-mean flow interaction.


Sign in / Sign up

Export Citation Format

Share Document