scholarly journals Dry Intrusions: Lagrangian Climatology and Dynamical Impact on the Planetary Boundary Layer

2017 ◽  
Vol 30 (17) ◽  
pp. 6661-6682 ◽  
Author(s):  
Shira Raveh-Rubin

Dry-air intrusions (DIs) are dry, deeply descending airstreams from the upper troposphere toward the planetary boundary layer (PBL). The significance of DIs spans a variety of aspects, including the interaction with convection, extratropical cyclones and fronts, the PBL, and extreme surface weather. Here, a Lagrangian definition for DI trajectories is used and applied to ECMWF interim reanalysis (ERA-Interim) data. Based on the criterion of a minimum descent of 400 hPa during 48 h, a first global Lagrangian climatology of DI trajectories is compiled for the years 1979–2014, allowing quantitative understanding of the occurrence and variability of DIs, as well as the dynamical and thermodynamical interactions that determine their impact. DIs occur mainly in winter. While traveling equatorward from 40°–50° latitude, DIs typically reach the lower troposphere (with maximum frequencies of ~10% in winter) in the storm-track regions, as well as over the Mediterranean Sea, Arabian Sea, and eastern North Pacific, off the western coast of South America, South Africa, and Australia, and across the Antarctic coast. The DI descent is nearly adiabatic, with a mean potential temperature decrease of 3 K in two days. Relative humidity drops strongly during the first descent day and increases in the second day, because of mixing into the moist PBL. Significant destabilization of the lower levels occurs beneath DIs, accompanied by increased 10-m wind gusts, intense surface heat and moisture fluxes, and elevated PBL heights. Interestingly, only 1.2% of all DIs are found to originate from the stratosphere.

2020 ◽  
Vol 148 (9) ◽  
pp. 3605-3630
Author(s):  
William Miller ◽  
Da-Lin Zhang

Abstract This study uses a recently developed trajectory model to trace eyewall updrafts in a high-resolution Hurricane Wilma (2005) prediction to their roots in the maritime boundary layer (MBL) in order to better understand their thermodynamics and how they interact with the swirling winds. Out of 97 020 four-hour backward trajectories seeded from the upper troposphere, the 45% of them originating from the MBL are stratified into five subsamples binned by peak vertical velocity wMAX. Of particular interest are the thermodynamic characteristics of parcels belonging to the wMAX-Extreme subsample (i.e., those with wMAX exceeding 20 m s−1) that ascend through Wilma’s strongest convective burst (CB) cores. A vertical momentum budget computed along a selected wMAX-Extreme trajectory confirms that the parcel possesses large positive buoyancy that more than compensates for negative hydrometeor loading to yield an upper-tropospheric wMAX ~ 30 m s−1. Comparing all 1170 wMAX-Extreme trajectories with all 19 296 secondary circulation trajectories shows that the former tends to originate from the MBL where equivalent potential temperature θe and ocean surface heat and moisture fluxes are locally enhanced. The wMAX-Extreme parcels become further differentiated from the background ascent in terms of their (i) greater updraft width and smaller θe reduction while ascending into the midtroposphere, implying lower environmental entrainment rates, and (ii) less hydrometeor loading in the z = 3–5-km layer. The Lagrangian analysis herein bridges two previous studies that focused separately on the importance of high SSTs and fusion latent heat release to the development of CBs, the latter of which may facilitate upper-level warm core development through their compensating subsidence.


2013 ◽  
Vol 141 (3) ◽  
pp. 1048-1060 ◽  
Author(s):  
John Molinari ◽  
Jaclyn Frank ◽  
David Vollaro

Abstract Tropical Storm Edouard (2002) experienced episodic outbreaks of convection downshear within the storm core in the presence of 11–15 m s−1 of ambient vertical wind shear. These outbreaks lasted 2–6 h and were followed by long periods with no deep convection. Flights from U.S. Air Force reconnaissance aircraft within the boundary layer were used to investigate the cause of one such oscillation. Low equivalent potential temperature θe air filled the boundary layer as convection ceased, creating a 4–6-K deficit in θe within the convective region. Soundings within 110 km of the center were supportive of convective downdrafts, with midlevel relative humidity below 15% and large downdraft CAPE. Deep convection ceased within 75 km of the center for more than 8 h. Tangential velocity reached hurricane force locally during the convective outbreak, then became nearly symmetric after convection stopped, arguably as a result of axisymmetrization, and the storm weakened. Nevertheless, the corresponding lack of convective downdrafts during this period allowed surface heat and moisture fluxes to produce substantial increases in boundary layer entropy. A new burst of convection followed. Consistent with recent papers it is argued that tropical cyclone intensification and decay can be understood as a competition between surface heat and moisture fluxes (“fuel”) and low-entropy downdrafts into the boundary layer (“antifuel”).


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 284
Author(s):  
Evan A. Kalina ◽  
Mrinal K. Biswas ◽  
Jun A. Zhang ◽  
Kathryn M. Newman

The intensity and structure of simulated tropical cyclones (TCs) are known to be sensitive to the planetary boundary layer (PBL) parameterization in numerical weather prediction models. In this paper, we use an idealized version of the Hurricane Weather Research and Forecast system (HWRF) with constant sea-surface temperature (SST) to examine how the configuration of the PBL scheme used in the operational HWRF affects TC intensity change (including rapid intensification) and structure. The configuration changes explored in this study include disabling non-local vertical mixing, changing the coefficients in the stability functions for momentum and heat, and directly modifying the Prandtl number (Pr), which controls the ratio of momentum to heat and moisture exchange in the PBL. Relative to the control simulation, disabling non-local mixing produced a ~15% larger storm that intensified more gradually, while changing the coefficient values used in the stability functions had little effect. Varying Pr within the PBL had the greatest impact, with the largest Pr (~1.6 versus ~0.8) associated with more rapid intensification (~38 versus 29 m s−1 per day) but a 5–10 m s−1 weaker intensity after the initial period of strengthening. This seemingly paradoxical result is likely due to a decrease in the radius of maximum wind (~15 versus 20 km), but smaller enthalpy fluxes, in simulated storms with larger Pr. These results underscore the importance of measuring the vertical eddy diffusivities of momentum, heat, and moisture under high-wind, open-ocean conditions to reduce uncertainty in Pr in the TC PBL.


2015 ◽  
Vol 28 (3) ◽  
pp. 1126-1147 ◽  
Author(s):  
Dimitry Smirnov ◽  
Matthew Newman ◽  
Michael A. Alexander ◽  
Young-Oh Kwon ◽  
Claude Frankignoul

Abstract The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25°) version of the global Community Atmosphere Model, version 5 (CAM5). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly–induced diabatic heating is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1°) version of CAM5. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of . However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (ω) budget reveals that HR has a substantially stronger response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.


2017 ◽  
Vol 74 (6) ◽  
pp. 1879-1905 ◽  
Author(s):  
Feimin Zhang ◽  
Zhaoxia Pu

Abstract As a result of rapid changes in surface conditions when a landfalling hurricane moves from ocean to land, interactions between the hurricane and surface heat and moisture fluxes become essential components of its evolution and dissipation. With a research version of the Hurricane Weather Research and Forecasting Model (HWRF), this study examines the effects of the vertical eddy diffusivity in the boundary layer on the evolution of three landfalling hurricanes (Dennis, Katrina, and Rita in 2005). Specifically, the parameterization scheme of eddy diffusivity for momentum Km is adjusted with the modification of the mixed-layer velocity scale in HWRF for both stable and unstable conditions. Results show that the change in the Km parameter leads to improved simulations of hurricane track, intensity, and quantitative precipitation against observations during and after landfall, compared to the simulations with the original Km. Further diagnosis shows that, compared to original Km, the modified Km produces stronger vertical mixing in the hurricane boundary layer over land, which tends to stabilize the hurricane boundary layer. Consequently, the simulated landfalling hurricanes attenuate effectively with the modified Km, while they mostly inherit their characteristics over the ocean and decay inefficiently with the original Km.


2018 ◽  
Vol 33 (5) ◽  
pp. 1109-1120 ◽  
Author(s):  
David E. Jahn ◽  
William A. Gallus

Abstract The Great Plains low-level jet (LLJ) is influential in the initiation and evolution of nocturnal convection through the northward advection of heat and moisture, as well as convergence in the region of the LLJ nose. However, accurate numerical model forecasts of LLJs remain a challenge, related to the performance of the planetary boundary layer (PBL) scheme in the stable boundary layer. Evaluated here using a series of LLJ cases from the Plains Elevated Convection at Night (PECAN) program are modifications to a commonly used local PBL scheme, Mellor–Yamada–Nakanishi–Niino (MYNN), available in the Weather Research and Forecasting (WRF) Model. WRF forecast mean absolute error (MAE) and bias are calculated relative to PECAN rawinsonde observations. The first MYNN modification invokes a new set of constants for the scheme closure equations that, in the vicinity of the LLJ, decreases forecast MAEs of wind speed, potential temperature, and specific humidity more than 19%. For comparison, the Yonsei University (YSU) scheme results in wind speed MAEs 22% lower but specific humidity MAEs 17% greater than in the original MYNN scheme. The second MYNN modification, which incorporates the effects of potential kinetic energy and uses a nonzero mixing length in stable conditions as dependent on bulk shear, reduces wind speed MAEs 66% for levels below the LLJ, but increases MAEs at higher levels. Finally, Rapid Refresh analyses, which are often used for forecast verification, are evaluated here and found to exhibit a relatively large average wind speed bias of 3 m s−1 in the region below the LLJ, but with relatively small potential temperature and specific humidity biases.


2014 ◽  
Vol 7 (6) ◽  
pp. 2599-2611 ◽  
Author(s):  
Y. Zhang ◽  
Z. Gao ◽  
D. Li ◽  
Y. Li ◽  
N. Zhang ◽  
...  

Abstract. Experimental data from four field campaigns are used to explore the variability of the bulk Richardson number of the entire planetary boundary layer (PBL), Ribc, which is a key parameter for calculating the PBL height (PBLH) in numerical weather and climate models with the bulk Richardson number method. First, the PBLHs of three different thermally stratified boundary layers (i.e., strongly stable boundary layers, weakly stable boundary layers, and unstable boundary layers) from the four field campaigns are determined using the turbulence method, the potential temperature gradient method, the low-level jet method, and the modified parcel method. Then for each type of boundary layer, an optimal Ribc is obtained through linear fitting and statistical error minimization methods so that the bulk Richardson method with this optimal Ribc yields similar estimates of PBLHs as the methods mentioned above. We find that the optimal Ribc increases as the PBL becomes more unstable: 0.24 for strongly stable boundary layers, 0.31 for weakly stable boundary layers, and 0.39 for unstable boundary layers. Compared with previous schemes that use a single value of Ribc in calculating the PBLH for all types of boundary layers, the new values of Ribc proposed by this study yield more accurate estimates of PBLHs.


2011 ◽  
Vol 68 (5) ◽  
pp. 1041-1057 ◽  
Author(s):  
Linda Schlemmer ◽  
Cathy Hohenegger ◽  
Jürg Schmidli ◽  
Christopher S. Bretherton ◽  
Christoph Schär

Abstract This paper introduces an idealized cloud-resolving modeling (CRM) framework for the study of midlatitude diurnal convection over land. The framework is used to study the feedbacks among soil, boundary layer, and diurnal convection. It includes a setup with explicit convection and a full set of parameterizations. Predicted variables are constantly relaxed toward prescribed atmospheric profiles and soil conditions. The relaxation is weak in the lower troposphere and upper soil to allow the development of a realistic diurnal planetary boundary layer. The model is run to its own equilibrium (30 days). The framework is able to produce a realistic timing of the diurnal cycle of convection. It also confirms the development of deeper convection in a more unstably stratified atmosphere. With this relaxation method, the simulated “diurnal equilibrium convection” determines the humidity profile of the lower atmosphere, and the simulation becomes insensitive to the reference humidity profile. However, if a faster relaxation time is used in the lower troposphere, the convection and rainfall become much more sensitive to the reference humidity, consistent with previous studies.


2015 ◽  
Vol 30 (3) ◽  
pp. 591-612 ◽  
Author(s):  
Ariel E. Cohen ◽  
Steven M. Cavallo ◽  
Michael C. Coniglio ◽  
Harold E. Brooks

Abstract The representation of turbulent mixing within the lower troposphere is needed to accurately portray the vertical thermodynamic and kinematic profiles of the atmosphere in mesoscale model forecasts. For mesoscale models, turbulence is mostly a subgrid-scale process, but its presence in the planetary boundary layer (PBL) can directly modulate a simulation’s depiction of mass fields relevant for forecast problems. The primary goal of this work is to review the various parameterization schemes that the Weather Research and Forecasting Model employs in its depiction of turbulent mixing (PBL schemes) in general, and is followed by an application to a severe weather environment. Each scheme represents mixing on a local and/or nonlocal basis. Local schemes only consider immediately adjacent vertical levels in the model, whereas nonlocal schemes can consider a deeper layer covering multiple levels in representing the effects of vertical mixing through the PBL. As an application, a pair of cold season severe weather events that occurred in the southeastern United States are examined. Such cases highlight the ambiguities of classically defined PBL schemes in a cold season severe weather environment, though characteristics of the PBL schemes are apparent in this case. Low-level lapse rates and storm-relative helicity are typically steeper and slightly smaller for nonlocal than local schemes, respectively. Nonlocal mixing is necessary to more accurately forecast the lower-tropospheric lapse rates within the warm sector of these events. While all schemes yield overestimations of mixed-layer convective available potential energy (MLCAPE), nonlocal schemes more strongly overestimate MLCAPE than do local schemes.


2008 ◽  
Vol 47 (3) ◽  
pp. 752-768 ◽  
Author(s):  
Susanne Grossman-Clarke ◽  
Yubao Liu ◽  
Joseph A. Zehnder ◽  
Jerome D. Fast

Abstract A modified version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) was applied to the arid Phoenix, Arizona, metropolitan region. The ability of the model to simulate characteristics of the summertime urban planetary boundary layer (PBL) was tested by comparing model results with observations from two field campaigns conducted in May/June 1998 and June 2001. The modified MM5 included a refined land use/cover classification and updated land use data for Phoenix and bulk approaches of characteristics of the urban surface energy balance. PBL processes were simulated by a version of MM5’s Medium-Range Forecast Model (MRF) scheme that was enhanced by new surface flux and nonlocal mixing approaches. Simulated potential temperature profiles were tested against radiosonde data, indicating that the modified MRF scheme was able to simulate vertical mixing and the evolution and height of the PBL with good accuracy and better than the original MRF scheme except in the late afternoon. During both simulation periods, it is demonstrated that the modified MM5 simulated near-surface air temperatures and wind speeds in the urban area consistently and considerably better than the standard MM5 and that wind direction simulations were improved slightly.


Sign in / Sign up

Export Citation Format

Share Document