Convective Bursts, Downdraft Cooling, and Boundary Layer Recovery in a Sheared Tropical Storm

2013 ◽  
Vol 141 (3) ◽  
pp. 1048-1060 ◽  
Author(s):  
John Molinari ◽  
Jaclyn Frank ◽  
David Vollaro

Abstract Tropical Storm Edouard (2002) experienced episodic outbreaks of convection downshear within the storm core in the presence of 11–15 m s−1 of ambient vertical wind shear. These outbreaks lasted 2–6 h and were followed by long periods with no deep convection. Flights from U.S. Air Force reconnaissance aircraft within the boundary layer were used to investigate the cause of one such oscillation. Low equivalent potential temperature θe air filled the boundary layer as convection ceased, creating a 4–6-K deficit in θe within the convective region. Soundings within 110 km of the center were supportive of convective downdrafts, with midlevel relative humidity below 15% and large downdraft CAPE. Deep convection ceased within 75 km of the center for more than 8 h. Tangential velocity reached hurricane force locally during the convective outbreak, then became nearly symmetric after convection stopped, arguably as a result of axisymmetrization, and the storm weakened. Nevertheless, the corresponding lack of convective downdrafts during this period allowed surface heat and moisture fluxes to produce substantial increases in boundary layer entropy. A new burst of convection followed. Consistent with recent papers it is argued that tropical cyclone intensification and decay can be understood as a competition between surface heat and moisture fluxes (“fuel”) and low-entropy downdrafts into the boundary layer (“antifuel”).

2017 ◽  
Vol 30 (17) ◽  
pp. 6661-6682 ◽  
Author(s):  
Shira Raveh-Rubin

Dry-air intrusions (DIs) are dry, deeply descending airstreams from the upper troposphere toward the planetary boundary layer (PBL). The significance of DIs spans a variety of aspects, including the interaction with convection, extratropical cyclones and fronts, the PBL, and extreme surface weather. Here, a Lagrangian definition for DI trajectories is used and applied to ECMWF interim reanalysis (ERA-Interim) data. Based on the criterion of a minimum descent of 400 hPa during 48 h, a first global Lagrangian climatology of DI trajectories is compiled for the years 1979–2014, allowing quantitative understanding of the occurrence and variability of DIs, as well as the dynamical and thermodynamical interactions that determine their impact. DIs occur mainly in winter. While traveling equatorward from 40°–50° latitude, DIs typically reach the lower troposphere (with maximum frequencies of ~10% in winter) in the storm-track regions, as well as over the Mediterranean Sea, Arabian Sea, and eastern North Pacific, off the western coast of South America, South Africa, and Australia, and across the Antarctic coast. The DI descent is nearly adiabatic, with a mean potential temperature decrease of 3 K in two days. Relative humidity drops strongly during the first descent day and increases in the second day, because of mixing into the moist PBL. Significant destabilization of the lower levels occurs beneath DIs, accompanied by increased 10-m wind gusts, intense surface heat and moisture fluxes, and elevated PBL heights. Interestingly, only 1.2% of all DIs are found to originate from the stratosphere.


2020 ◽  
Vol 148 (9) ◽  
pp. 3605-3630
Author(s):  
William Miller ◽  
Da-Lin Zhang

Abstract This study uses a recently developed trajectory model to trace eyewall updrafts in a high-resolution Hurricane Wilma (2005) prediction to their roots in the maritime boundary layer (MBL) in order to better understand their thermodynamics and how they interact with the swirling winds. Out of 97 020 four-hour backward trajectories seeded from the upper troposphere, the 45% of them originating from the MBL are stratified into five subsamples binned by peak vertical velocity wMAX. Of particular interest are the thermodynamic characteristics of parcels belonging to the wMAX-Extreme subsample (i.e., those with wMAX exceeding 20 m s−1) that ascend through Wilma’s strongest convective burst (CB) cores. A vertical momentum budget computed along a selected wMAX-Extreme trajectory confirms that the parcel possesses large positive buoyancy that more than compensates for negative hydrometeor loading to yield an upper-tropospheric wMAX ~ 30 m s−1. Comparing all 1170 wMAX-Extreme trajectories with all 19 296 secondary circulation trajectories shows that the former tends to originate from the MBL where equivalent potential temperature θe and ocean surface heat and moisture fluxes are locally enhanced. The wMAX-Extreme parcels become further differentiated from the background ascent in terms of their (i) greater updraft width and smaller θe reduction while ascending into the midtroposphere, implying lower environmental entrainment rates, and (ii) less hydrometeor loading in the z = 3–5-km layer. The Lagrangian analysis herein bridges two previous studies that focused separately on the importance of high SSTs and fusion latent heat release to the development of CBs, the latter of which may facilitate upper-level warm core development through their compensating subsidence.


2021 ◽  
Author(s):  
Marco A. Franco ◽  
Florian Ditas ◽  
Leslie Ann Kremper ◽  
Luiz A. T. Machado ◽  
Meinrat O. Andreae ◽  
...  

Abstract. New particle formation (NPF), referring to the nucleation of molecular clusters and their subsequent growth into the cloud condensation nuclei (CCN) size range, is a globally significant and climate-relevant source of atmospheric aerosols. Classical NPF exhibiting continuous growth from a few nanometers to the Aitken mode around 60–70 nm is widely observed in the planetary boundary layer (PBL) around the world, but not in central Amazonia. Here, classical NPF events are rarely observed in the PBL, but instead, NPF begins in the upper troposphere (UT), followed by downdraft injection of sub-50 nm (CN< 50) particles into the PBL and their subsequent growth. Central aspects of our understanding of these processes in the Amazon have remained enigmatic, however. Based on more than six years of aerosol and meteorological data from the Amazon Tall Tower Observatory (ATTO, Feb 2014 to Sep 2020), we analyzed the diurnal and seasonal patterns as well as meteorological conditions during 254 of such Amazonian growth events on 217 event days, which show a sudden occurrence of particles between 10 and 50 nm in the PBL, followed by their growth to CCN sizes. The occurrence of events was significantly higher during the wet season, with 88 % of all events from January to June, than during the dry season, with 12 % from July to December, probably due to differences in the condensation sink (CS), atmospheric aerosol load, and meteorological conditions. Across all events, a median growth rate (GR) of 5.2 nm h−1 and a median CS of 0.0011 s−1 were observed. The growth events were more frequent during the daytime (74 %) and showed higher GR (5.9 nm h−1) compared to nighttime events (4.0 nm h−1), emphasizing the role of photochemistry and PBL evolution in particle growth. About 70 % of the events showed a negative anomaly of the equivalent potential temperature (∆θ'e) – as a marker for downdrafts – and a low satellite brightness temperature (Tir) – as a marker for deep convective clouds – in good agreement with particle injection from the UT in the course of strong convective activity. About 30 % of the events, however, occurred in the absence of deep convection, partly under clear sky conditions, and with a positive ∆θ'e anomaly. Therefore, these events do not appear to be related to downdraft injection and suggest the existence of other currently unknown sources of the sub-50 nm particles.


2017 ◽  
Vol 74 (6) ◽  
pp. 1879-1905 ◽  
Author(s):  
Feimin Zhang ◽  
Zhaoxia Pu

Abstract As a result of rapid changes in surface conditions when a landfalling hurricane moves from ocean to land, interactions between the hurricane and surface heat and moisture fluxes become essential components of its evolution and dissipation. With a research version of the Hurricane Weather Research and Forecasting Model (HWRF), this study examines the effects of the vertical eddy diffusivity in the boundary layer on the evolution of three landfalling hurricanes (Dennis, Katrina, and Rita in 2005). Specifically, the parameterization scheme of eddy diffusivity for momentum Km is adjusted with the modification of the mixed-layer velocity scale in HWRF for both stable and unstable conditions. Results show that the change in the Km parameter leads to improved simulations of hurricane track, intensity, and quantitative precipitation against observations during and after landfall, compared to the simulations with the original Km. Further diagnosis shows that, compared to original Km, the modified Km produces stronger vertical mixing in the hurricane boundary layer over land, which tends to stabilize the hurricane boundary layer. Consequently, the simulated landfalling hurricanes attenuate effectively with the modified Km, while they mostly inherit their characteristics over the ocean and decay inefficiently with the original Km.


2017 ◽  
Vol 145 (6) ◽  
pp. 2343-2361 ◽  
Author(s):  
Feimin Zhang ◽  
Zhaoxia Pu ◽  
Chenghai Wang

Abstract After a hurricane makes landfall, its evolution is strongly influenced by its interaction with the planetary boundary layer (PBL) over land. In this study, a series of numerical experiments are performed to examine the effects of boundary layer vertical mixing on hurricane simulations over land using a research version of the NCEP Hurricane Weather Research and Forecasting (HWRF) Model with three landfalling hurricane cases. It is found that vertical mixing in the PBL has a strong influence on the simulated hurricane evolution. Specifically, strong vertical mixing has a positive impact on numerical simulations of hurricanes over land, with better track, intensity, synoptic flow, and precipitation simulations. In contrast, weak vertical mixing leads to the strong hurricanes over land. Diagnoses of the thermodynamic and dynamic structures of hurricane vortices further suggest that the strong vertical mixing in the PBL could cause a decrease in the vertical wind shear and an increase in the vertical gradient of virtual potential temperature. As a consequence, these changes destroy the turbulence kinetic energy in the hurricane boundary layer and thus stabilize the hurricane boundary layer and limit its maintenance over land.


2009 ◽  
Vol 66 (9) ◽  
pp. 2780-2795 ◽  
Author(s):  
Michael L. Waite ◽  
Boualem Khouider

Abstract A simplified model of intermediate complexity for convectively coupled gravity waves that incorporates the bulk dynamics of the atmospheric boundary layer is developed and analyzed. The model comprises equations for velocity, potential temperature, and moist entropy in the boundary layer as well as equations for the free tropospheric barotropic (vertically uniform) velocity and first two baroclinic modes of vertical structure. It is based on the multicloud model of Khouider and Majda coupled to the bulk boundary layer–shallow cumulus model of Stevens. The original multicloud model has a purely thermodynamic boundary layer and no barotropic velocity mode. Here, boundary layer horizontal velocity divergence is matched with barotropic convergence in the free troposphere and yields environmental downdrafts. Both environmental and convective downdrafts act to transport dry midtropospheric air into the boundary layer. Basic states in radiative–convective equilibrium are found and are shown to be consistent with observations of boundary layer and free troposphere climatology. The linear stability of these basic states, in the case without rotation, is then analyzed for a variety of tropospheric regimes. The inclusion of boundary layer dynamics—specifically, environmental downdrafts and entrainment of free tropospheric air—enhances the instability of both the synoptic-scale moist gravity waves and nonpropagating congestus modes in the multicloud model. The congestus mode has a preferred synoptic-scale wavelength, which is absent when a purely thermodynamic boundary layer is employed. The weak destabilization of a fast mesoscale wave, with a phase speed of 26 m s−1 and coupling to deep convection, is also discussed.


2010 ◽  
Vol 10 (22) ◽  
pp. 10803-10827 ◽  
Author(s):  
M. T. Montgomery ◽  
Z. Wang ◽  
T. J. Dunkerton

Abstract. Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from within the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm". Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the Kurihara and Tuleya problem examining the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km), intermediate (9 km) and high resolution (3.1 km) simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of a rotationally dominant region with minimal strain/shear deformation near the center of the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together. Implications of these findings are discussed in relation to an upcoming field experiment for the most active period of the Atlantic hurricane season in 2010 that is to be conducted collaboratively between the National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation (NSF), and the National Aeronautics and Space Adminstration (NASA).


2009 ◽  
Vol 137 (1) ◽  
pp. 51-67 ◽  
Author(s):  
Kay L. Shelton ◽  
John Molinari

Abstract Hurricane Claudette developed from a weak vortex in 6 h as deep convection shifted from downshear into the vortex center, despite ambient vertical wind shear exceeding 10 m s−1. Six hours later it weakened to a tropical storm, and 12 h after the hurricane stage a circulation center could not be found at 850 hPa by aircraft reconnaissance. At hurricane strength the vortex contained classic structure seen in intensifying hurricanes, with the exception of 7°–12°C dewpoint depressions in the lower troposphere upshear of the center. These extended from the 100-km radius to immediately adjacent to the eyewall, where equivalent potential temperature gradients reached 6 K km−1. The dry air was not present prior to intensification, suggesting that it was associated with vertical shear–induced subsidence upshear of the developing storm. It is argued that weakening of the vortex was driven by cooling associated with the mixing of dry air into the core, and subsequent evaporation and cold downdrafts. Evidence suggests that this mixing might have been enhanced by eyewall instabilities after the period of rapid deepening. The existence of a fragile, small, but genuinely hurricane-strength vortex at the surface for 6 h presents difficult problems for forecasters. Such a “temporary hurricane” in strongly sheared flow might require a different warning protocol than longer-lasting hurricane vortices in weaker shear.


2019 ◽  
Vol 147 (10) ◽  
pp. 3519-3534 ◽  
Author(s):  
Leon T. Nguyen ◽  
Robert Rogers ◽  
Jonathan Zawislak ◽  
Jun A. Zhang

Abstract The thermodynamic impacts of downdraft-induced cooling/drying and downstream recovery via surface enthalpy fluxes within tropical cyclones (TCs) were investigated using dropsonde observations collected from 1996 to 2017. This study focused on relatively weak TCs (tropical depression, tropical storm, category 1 hurricane) that were subjected to moderate (4.5–11.0 m s−1) levels of environmental vertical wind shear. The dropsonde data were analyzed in a shear-relative framework and binned according to TC intensity change in the 24 h following the dropsonde observation time, allowing for comparison between storms that underwent different intensity changes. Moisture and temperature asymmetries in the lower troposphere yielded a relative maximum in lower-tropospheric conditional instability in the downshear quadrants and a relative minimum in instability in the upshear quadrants, regardless of intensity change. However, the instability increased as the intensification rate increased, particularly in the downshear quadrants. This was due to increased boundary layer moist entropy relative to the temperature profile above the boundary layer. Additionally, significantly larger surface enthalpy fluxes were observed as the intensification rate increased, particularly in the upshear quadrants. These results suggest that in intensifying storms, enhanced surface enthalpy fluxes in the upshear quadrants allow downdraft-modified boundary layer air to recover moisture and heat more effectively as it is advected cyclonically around the storm. By the time the air reaches the downshear quadrants, the lower-tropospheric conditional instability is enhanced, which is speculated to be more favorable for updraft growth and deep convection.


2009 ◽  
Vol 66 (2) ◽  
pp. 412-431 ◽  
Author(s):  
Rob Stoll ◽  
Fernando Porté-Agel

Abstract Large-eddy simulation, with recently developed dynamic subgrid-scale models, is used to study the effect of heterogeneous surface temperature distributions on regional-scale turbulent fluxes in the stable boundary layer (SBL). Simulations are performed of a continuously turbulent SBL with surface heterogeneity added in the form of streamwise transitions in surface temperature. Temperature differences between patches of 6 and 3 K are explored with patch length scales ranging from one-half to twice the equivalent homogeneous boundary layer height. The surface temperature heterogeneity has important effects on the mean wind speed and potential temperature profiles as well as on the surface heat flux distribution. Increasing the difference between the patch temperatures results in decreased magnitude of the average surface heat flux, with a corresponding increase in the mean potential temperature in the boundary layer. The simulation results are also used to test existing models for average surface fluxes over heterogeneous terrain. The tested models fail to fully represent the average turbulent heat flux, with models that break the domain into homogeneous subareas grossly underestimating the heat flux magnitude over patches with relatively colder surface temperatures. Motivated by these results, a new parameterization based on local similarity theory is proposed. The new formulation is found to correct the bias over the cold patches, resulting in improved average surface heat flux calculations.


Sign in / Sign up

Export Citation Format

Share Document