scholarly journals Detection of Intraseasonal Large-Scale Heat Waves: Characteristics and Historical Trends during the Sahelian Spring

2017 ◽  
Vol 31 (1) ◽  
pp. 61-80 ◽  
Author(s):  
J. Barbier ◽  
F. Guichard ◽  
D. Bouniol ◽  
F. Couvreux ◽  
R. Roehrig

Abstract In the Sahel very high temperatures prevail in spring, but little is known about heat waves in this region at that time of year. This study documents Sahelian heat waves with a new methodology that allows selecting heat waves at specific spatiotemporal scales and can be used in other parts of the world. It is applied separately to daily maximum and minimum temperatures, as they lead to the identification of distinct events. Synoptic–intraseasonal Sahelian heat waves are characterized from March to July over the period 1950–2012 with the Berkeley Earth Surface Temperature (BEST) gridded dataset. Morphological and temperature-related characteristics of the selected heat waves are presented. From March to July, the further into the season, the shorter and the less frequent the heat waves become. From 1950 to 2012, these synoptic–intraseasonal heat waves do not tend to be more frequent; however, they become warmer, and this trend follows the Sahelian climatic trend. Compared to other commonly used indices, the present index tends to select heat waves with more uniform intensities. This comparison of indices also underlined the importance of the heat index definition on the estimated climatic heat wave trends in a changing climate. Finally, heat waves were identified with data from three meteorological reanalyses: ERA-Interim, MERRA, and NCEP-2. The spreads in temperature variabilities, seasonal cycles, and trends among reanalyses lead to differences in the characteristics, interannual variability, and climatic trends of heat waves, with fewer departures from BEST for ERA-Interim.

2021 ◽  
Author(s):  
Taylor Grace ◽  
Jordan Christian ◽  
Jeffery Basara

<p>Flash droughts and heat waves have substantial impacts on agriculture, socioeconomics, and human health. The combined influence of these two events exacerbate the damage to several sectors. The positive feedback between drought and heat waves has been previously studied, but the connection between flash drought and heat waves (or record temperatures) has only been investigated to occur roughly at the same temporal period. Further understanding the compound and cascading impacts of flash droughts and heat waves could potentially enhance monitoring and/or predictability of flash drought events benefiting subseasonal-to-seasonal forecasts, minimize human mortality, and prevent agricultural yield loss. We present a novel approach to analyzing compound and cascading impacts from the flash drought-heat wave relationship by investigating multiple case studies (e.g., 1950s drought event, 2011-2012 U.S. flash drought, and 2019 U.S. flash drought). Several reanalysis datasets were utilized to examine the intensity, temporal duration, and spatial extent relationships between flash drought and heat wave conditions during the case study events. We define heat waves using the following framework which incorporates classifications employed in previous studies; one classification is dependent on a relative threshold (i.e., 95<sup>th</sup> percentile) applied to daily maximum and minimum temperatures, whereas the second part of the definition utilizes heat index under the same relative threshold. In order for a heat wave event to begin, this definition must hold true for three or more consecutive days for a specified spatial method. Our flash drought analysis incorporated a percentile methodology based on standardized evapotranspiration stress ratio (SESR). Comparison between intensity, spatial extent, and temporal duration relationships for compound and cascading events were of particular focus for this study. A mixture of compound and cascading events were found within one flash drought study (i.e., 2011-2012 flash drought). As such, we further hypothesize that the intensity and temporal duration will differ between compound and cascading events. Yet, we expect the spatial extent to remain positively correlated as shown from previous studies.</p>


Abstract Extreme heat is annually the deadliest weather hazard in the U.S. and is strongly amplified by climate change. In Florida, summer heat waves have increased in frequency and duration, exacerbating negative human health impacts on a state with a substantial older population and industries (e.g., agriculture) that require frequent outdoor work. However, the combined impacts of temperature and humidity (heat stress) have not been previously investigated. For eight Florida cities, this study constructs summer climatologies and trend analyses (1950–2020) of two heat stress metrics: heat index (HI) and wet bulb globe temperature (WBGT). While both incorporate temperature and humidity, WBGT also includes wind and solar radiation, and is a more comprehensive measure of heat stress on the human body. With minor exceptions, results show increases in average summer daily maximum, mean, and minimum HI and WBGT throughout Florida. Daily minimum HI and WBGT exhibit statistically significant increases at all eight stations, emphasizing a hazardous rise in nighttime heat stress. Corresponding to other recent studies, HI and WBGT increases are largest in coastal subtropical locations in Central and South Florida (i.e., Daytona Beach, Tampa, Miami, Key West), but exhibit no conclusive relationship with urbanization changes. Finally, danger (103–124°F) HI and high (> 88°F) WBGT summer days exhibit significant frequency increases across the state. Especially at coastal locations in the Florida Peninsula and Keys, danger HI and high WBGT days now account for > 20% of total summer days, emphasizing a substantial escalation in heat stress, particularly since 2000.


2019 ◽  
Vol 58 (3) ◽  
pp. 447-466 ◽  
Author(s):  
Shealynn R. Cloutier-Bisbee ◽  
Ajay Raghavendra ◽  
Shawn M. Milrad

AbstractHeat waves are increasing in frequency, duration, and intensity and are strongly linked to anthropogenic climate change. However, few studies have examined heat waves in Florida, despite an older population and increasingly urbanized land areas that make it particularly susceptible to heat impacts. Heavy precipitation events are also becoming more frequent and intense; recent climate model simulations showed that heavy precipitation in the three days after a Florida heat wave follow these trends, yet the underlying dynamic and thermodynamic mechanisms have not been investigated. In this study, a heat wave climatology and trend analysis are developed from 1950 to 2016 for seven major airports in Florida. Heat waves are defined based on the 95th percentile of daily maximum, minimum, and mean temperatures. Results show that heat waves exhibit statistically significant increases in frequency and duration at most stations, especially for mean and minimum temperature events. Frequency and duration increases are most prominent at Tallahassee, Tampa, Miami, and Key West. Heat waves in northern Florida are characterized by large-scale continental ridging, while heat waves in central and southern Florida are associated with a combination of a continental ridge and a westward extension of the Bermuda–Azores high. Heavy precipitation events that follow a heat wave are characterized by anomalously large ascent and moisture, as well as strong instability. Light precipitation events in northern Florida are characterized by advection of drier air from the continent, while over central and southern Florida, prolonged subsidence is the most important difference between heavy and light events.


2017 ◽  
Vol 30 (19) ◽  
pp. 7827-7845 ◽  
Author(s):  
Bradfield Lyon ◽  
Anthony G. Barnston

Abstract Heat waves are climate extremes having significant environmental and social impacts. However, there is no universally accepted definition of a heat wave. The major goal of this study is to compare characteristics of continental U.S. warm season (May–September) heat waves defined using four different variables—temperature itself and three variables incorporating atmospheric moisture—all for differing intensity and duration requirements. To normalize across different locations and climates, daily intensity is defined using percentiles computed over the 1979–2013 period. The primary data source is the U.S. Historical Climatological Network (USHCN), with humidity data from the North American Regional Reanalysis (NARR) also tested and utilized. The results indicate that heat waves defined using daily maximum temperatures are more frequent and persistent than when based on minimum temperatures, with substantial regional variations in behavior. For all four temperature variables, heat waves based on daily minimum values have greater spatial coherency than for daily maximum values. Regionally, statistically significant upward trends (1979–2013) in heat wave frequency are identified, largest when based on daily minimum values, across variables. Other notable differences in behavior include a higher frequency of heat waves based on maximum temperature itself than for variables that include humidity, while daily minimum temperatures show greater similarity across all variables in this regard. Overall, the study provides a baseline to compare with results from climate model simulations and projections, for examining differing regional and large-scale circulation patterns associated with U.S. summer heat waves and for examining the role of land surface conditions in modulating regional variations in heat wave behavior.


2014 ◽  
Vol 27 (15) ◽  
pp. 5768-5785 ◽  
Author(s):  
Teresa J. Parker ◽  
Gareth J. Berry ◽  
Michael J. Reeder

Abstract The underlying large-scale dynamical processes responsible for the development of heat waves in Victoria, southeastern Australia, in summer are presented here. Heat waves are defined as periods of at least three days and two nights for which daily maximum and minimum temperatures exceed the 90th percentile for a particular location and month, using a station daily temperature dataset. Composites of upper-level potential vorticity anomalies from the Interim ECMWF Re-Analysis (ERA-Interim) reveal that heat waves in southeastern Australia are associated with propagating Rossby waves, which grow in amplitude and eventually overturn. The process of overturning generates an upper-level anticyclone over southern Australia and an upper-level trough to the northeast, with maximum amplitudes near the tropopause. The northerly flow associated with the circulation around the surface anticyclone advects hot air from the continental interior over the southeast of Australia, leading to extreme surface temperatures. Composite rainfall shows that precipitation is enhanced in the vicinity of the upper-level trough over northeastern Australia, consistent with adiabatically forced vertical motion, destabilization of the atmosphere, and modified moisture fluxes. Heat waves in the southeast are frequently accompanied by heavy rainfall over the northeast of the continent and adjacent ocean.


2020 ◽  
Vol 82 ◽  
pp. 149-160
Author(s):  
N Kargapolova

Numerical models of the heat index time series and spatio-temporal fields can be used for a variety of purposes, from the study of the dynamics of heat waves to projections of the influence of future climate on humans. To conduct these studies one must have efficient numerical models that successfully reproduce key features of the real weather processes. In this study, 2 numerical stochastic models of the spatio-temporal non-Gaussian field of the average daily heat index (ADHI) are considered. The field is simulated on an irregular grid determined by the location of weather stations. The first model is based on the method of the inverse distribution function. The second model is constructed using the normalization method. Real data collected at weather stations located in southern Russia are used to both determine the input parameters and to verify the proposed models. It is shown that the first model reproduces the properties of the real field of the ADHI more precisely compared to the second one, but the numerical implementation of the first model is significantly more time consuming. In the future, it is intended to transform the models presented to a numerical model of the conditional spatio-temporal field of the ADHI defined on a dense spatio-temporal grid and to use the model constructed for the stochastic forecasting of the heat index.


2018 ◽  
Vol 14 (12) ◽  
pp. 1915-1960 ◽  
Author(s):  
Rudolf Brázdil ◽  
Andrea Kiss ◽  
Jürg Luterbacher ◽  
David J. Nash ◽  
Ladislava Řezníčková

Abstract. The use of documentary evidence to investigate past climatic trends and events has become a recognised approach in recent decades. This contribution presents the state of the art in its application to droughts. The range of documentary evidence is very wide, including general annals, chronicles, memoirs and diaries kept by missionaries, travellers and those specifically interested in the weather; records kept by administrators tasked with keeping accounts and other financial and economic records; legal-administrative evidence; religious sources; letters; songs; newspapers and journals; pictographic evidence; chronograms; epigraphic evidence; early instrumental observations; society commentaries; and compilations and books. These are available from many parts of the world. This variety of documentary information is evaluated with respect to the reconstruction of hydroclimatic conditions (precipitation, drought frequency and drought indices). Documentary-based drought reconstructions are then addressed in terms of long-term spatio-temporal fluctuations, major drought events, relationships with external forcing and large-scale climate drivers, socio-economic impacts and human responses. Documentary-based drought series are also considered from the viewpoint of spatio-temporal variability for certain continents, and their employment together with hydroclimate reconstructions from other proxies (in particular tree rings) is discussed. Finally, conclusions are drawn, and challenges for the future use of documentary evidence in the study of droughts are presented.


2020 ◽  
Vol 501 (1) ◽  
pp. L71-L75
Author(s):  
Cornelius Rampf ◽  
Oliver Hahn

ABSTRACT Perturbation theory is an indispensable tool for studying the cosmic large-scale structure, and establishing its limits is therefore of utmost importance. One crucial limitation of perturbation theory is shell-crossing, which is the instance when cold-dark-matter trajectories intersect for the first time. We investigate Lagrangian perturbation theory (LPT) at very high orders in the vicinity of the first shell-crossing for random initial data in a realistic three-dimensional Universe. For this, we have numerically implemented the all-order recursion relations for the matter trajectories, from which the convergence of the LPT series at shell-crossing is established. Convergence studies performed at large orders reveal the nature of the convergence-limiting singularities. These singularities are not the well-known density singularities at shell-crossing but occur at later times when LPT already ceased to provide physically meaningful results.


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 20
Author(s):  
Kleoniki Demertzi ◽  
Vassilios Pisinaras ◽  
Emanuel Lekakis ◽  
Evangelos Tziritis ◽  
Konstantinos Babakos ◽  
...  

Simple formulas for estimating annual actual evapotranspiration (AET) based on annual climate data are widely used in large scale applications. Such formulas do not have distinct compartments related to topography, soil and irrigation, and for this reason may be limited in basins with high slopes, where runoff is the dominant water balance component, and in basins where irrigated agriculture is dominant. Thus, a simplistic method for assessing AET in both natural ecosystems and agricultural systems considering the aforementioned elements is proposed in this study. The method solves AET through water balance based on a set of formulas that estimate runoff and percolation. These formulas are calibrated by the results of the deterministic hydrological model GLEAMS (Groundwater Loading Effects of Agricultural Management Systems) for a reference surface. The proposed methodology is applied to the country of Greece and compared with the widely used climate-based methods of Oldekop, Coutagne and Turk. The results show that the proposed methodology agrees very well with the method of Turk for the lowland regions but presents significant differences in places where runoff is expected to be very high (sloppy areas and areas of high rainfall, especially during December–February), suggesting that the proposed method performs better due to its runoff compartment. The method can also be applied in a single application considering irrigation only for the irrigated lands to more accurately estimate AET in basins with a high percentage of irrigated agriculture.


Organics ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 142-160
Author(s):  
Keith Smith ◽  
Gamal A. El-Hiti

para-Selective processes for the chlorination of phenols using sulphuryl chloride in the presence of various sulphur-containing catalysts have been successfully developed. Several chlorinated phenols, especially those derived by para-chlorination of phenol, ortho-cresol, meta-cresol, and meta-xylenol, are of significant commercial importance, but chlorination reactions of such phenols are not always as regioselective as would be desirable. We, therefore, undertook the challenge of developing suitable catalysts that might promote greater regioselectivity under conditions that might still be applicable for the commercial manufacture of products on a large scale. In this review, we chart our progress in this endeavour from early studies involving inorganic solids as potential catalysts, through the use of simple dialkyl sulphides, which were effective but unsuitable for commercial application, and through a variety of other types of sulphur compounds, to the eventual identification of particular poly(alkylene sulphide)s as very useful catalysts. When used in conjunction with a Lewis acid such as aluminium or ferric chloride as an activator, and with sulphuryl chloride as the reagent, quantitative yields of chlorophenols can be obtained with very high regioselectivity in the presence of tiny amounts of the polymeric sulphides, usually in solvent-free conditions (unless the phenol starting material is solid at temperatures even above about 50 °C). Notably, poly(alkylene sulphide)s containing longer spacer groups are particularly para-selective in the chlorination of m-cresol and m-xylenol, while, ones with shorter spacers are particularly para-selective in the chlorination of phenol, 2-chlorophenol, and o-cresol. Such chlorination processes result in some of the highest para/ortho ratios reported for the chlorination of phenols.


Sign in / Sign up

Export Citation Format

Share Document