scholarly journals Assessing the Relationship between MJO and Equatorial Pacific WWBs in Observations and CMIP5 Models

2018 ◽  
Vol 31 (16) ◽  
pp. 6393-6410 ◽  
Author(s):  
Jie Feng ◽  
Tao Lian

This study evaluates the relationship between the Madden–Julian oscillation (MJO) and the occurrence of equatorial Pacific westerly wind bursts (WWBs). During the convective MJO phase, anomalous surface westerlies prevail in and west of the convective MJO center, providing favorable conditions for WWBs. Compared with the probability of WWBs expected under a null hypothesis that WWBs occur randomly, the convective MJO phase almost doubles the probability of a WWB occurring. Nevertheless, only 34.46% of WWBs co-occur with the convective MJO, which is much less than that reported in previous studies. We show that when the MJO and WWBs are defined using the same field with overlapping frequencies, the percentage of WWBs co-occurring with the convective MJO shows a significant increase. However, the higher percentage is simply caused by the fact that the strong WWBs during a convective MJO are more likely to be identified than those during the suppressed and neutral MJO phases. A total of 45.80% of WWBs are found to occur in the full MJO phase (both the convective and suppressed MJO phases), which is slightly higher than that expected based on randomness. Although the full MJO has statistically significant impact on the likelihood of WWBs, the influence from the full MJO on the tropical Pacific sea surface temperature anomaly is much weaker as compared to that from the WWBs. The relationships between the MJO and WWBs simulated in CMIP5 models are also assessed, and the percentage of WWBs that co-occur with the MJO simulated in models is in general less than that in observations.

2018 ◽  
Vol 31 (19) ◽  
pp. 7789-7802 ◽  
Author(s):  
Sugata Narsey ◽  
Michael J. Reeder ◽  
Christian Jakob ◽  
Duncan Ackerley

The simulation of northern Australian wet season rainfall bursts by coupled climate models is evaluated. Individual models produce vastly different amounts of precipitation over the north of Australia during the wet season, and this is found to be related to the number of bursts they produce. The seasonal cycle of bursts is found to be poor in most of the models evaluated. It is known that northern Australian wet season bursts are often associated with midlatitude Rossby wave packets and their surface signature as they are refracted toward the tropics. The relationship between midlatitude waves and the initiation of wet season bursts is simulated well by the models evaluated. Another well-documented influence on the initiation of northern Australian wet season bursts is the Madden–Julian oscillation (MJO). No model adequately simulated the tropical outgoing longwave radiation temporal–spatial patterns seen in the reanalysis-derived OLR. This result suggests that the connection between the MJO and the initiation of northern Australian wet season bursts in models is poor.


2020 ◽  
Vol 33 (1) ◽  
pp. 397-404 ◽  
Author(s):  
Nicholas Lewis ◽  
Judith Curry

AbstractCowtan and Jacobs assert that the method used by Lewis and Curry in 2018 (LC18) to estimate the climate system’s transient climate response (TCR) from changes between two time windows is less robust—in particular against sea surface temperature bias correction uncertainty—than a method that uses the entire historical record. We demonstrate that TCR estimated using all data from the temperature record is closely in line with that estimated using the LC18 windows, as is the median TCR estimate using all pairs of individual years. We also show that the median TCR estimate from all pairs of decade-plus-length windows is closely in line with that estimated using the LC18 windows and that incorporating window selection uncertainty would make little difference to total uncertainty in TCR estimation. We find that, when differences in the evolution of forcing are accounted for, the relationship over time between warming in CMIP5 models and observations is consistent with the relationship between CMIP5 TCR and LC18’s TCR estimate but fluctuates as a result of multidecadal internal variability and volcanism. We also show that various other matters raised by Cowtan and Jacobs have negligible implications for TCR estimation in LC18.


2020 ◽  
Vol 33 (5) ◽  
pp. 1619-1641 ◽  
Author(s):  
Jie Feng ◽  
Tao Lian ◽  
Jun Ying ◽  
Junde Li ◽  
Gen Li

AbstractWhether the state-of-the-art CMIP5 models have different El Niño types and how the degree of modeled El Niño diversity would be impacted by the future global warming are still heavily debated. In this study, cluster analysis is used to investigate El Niño diversity in 30 CMIP5 models. As the method does not rely on any prior knowledge of the patterns of El Niño seen in observations, it provides a practical way to identify the degree of El Niño diversity in models. Under the historical scenario, most models show a poor degree of El Niño diversity in their own model world, primarily due to the lopsided numbers of events belonging to the two modeled El Niño types and the weak compactness of events in each cluster. Four models are found showing significant El Niño diversity, yet none of them captures the longitudinal distributions of the warming centers of the two El Niño types seen in the observations. Heat budget analysis of the sea surface temperature (SST) anomaly suggests that the degree of modeled El Niño diversity is highly related to the climatological zonal SST gradient over the western-central equatorial Pacific in models. As the gradient is weakened in most models under the future high-emission scenario, the degree of modeled El Niño diversity is further reduced in the future. The results indicate that a better simulation of the SST gradient over the western-central equatorial Pacific might allow a more reliable simulation/projection of El Niño diversity in most CMIP5 models.


Sign in / Sign up

Export Citation Format

Share Document