Constraining Projection-Based Estimates of the Future North Atlantic Carbon Uptake

2018 ◽  
Vol 31 (10) ◽  
pp. 3959-3978 ◽  
Author(s):  
Nadine Goris ◽  
Jerry F. Tjiputra ◽  
Are Olsen ◽  
Jörg Schwinger ◽  
Siv K. Lauvset ◽  
...  

The North Atlantic is one of the major sinks for anthropogenic carbon in the global ocean. Improved understanding of the underlying mechanisms is vital for constraining future projections, which presently have high uncertainties. To identify some of the causes behind this uncertainty, this study investigates the North Atlantic’s anthropogenically altered carbon uptake and inventory, that is, changes in carbon uptake and inventory due to rising atmospheric CO2 and climate change (abbreviated as [Formula: see text]-uptake and [Formula: see text]-inventory). Focus is set on an ensemble of 11 Earth system models and their simulations of a future with high atmospheric CO2. Results show that the model spread in the [Formula: see text]-uptake originates in middle and high latitudes. Here, the annual cycle of oceanic pCO2 reveals inherent model mechanisms that are responsible for different model behavior: while it is SST-dominated for models with a low future [Formula: see text]-uptake, it is dominated by deep winter mixing and biological production for models with a high future [Formula: see text]-uptake. Models with a high future [Formula: see text]-uptake show an efficient carbon sequestration and hence store a large fraction of their contemporary North Atlantic [Formula: see text]-inventory below 1000-m depth, while the opposite is true for models with a low future [Formula: see text]-uptake. Constraining the model ensemble with observation-based estimates of carbon sequestration and summer oceanic pCO2 anomalies yields later flattening of the [Formula: see text]-uptake than previously estimated. This result highlights the need to depart from the concept of unconstrained model ensembles in order to reduce uncertainties associated with future projections.

2021 ◽  
Author(s):  
Nadine Goris ◽  
Jerry Tjiputra ◽  
Are Ohlsen ◽  
Jörg Schwinger ◽  
Siv Lauvset ◽  
...  

<p>As one of the major carbon sinks in the global ocean, the North Atlantic is a key player in mediating and ameliorating the ongoing global warming. Projections of the North Atlantic carbon sink in a high-CO<sub>2</sub> future vary greatly among models, with some showing that a slowdown in carbon uptake has already begun and others predicting that this slowdown will not occur until nearly 2100.</p><p>Discrepancies among models largely originate because of differences in the efficiency of the high-latitude transport of carbon from the surface to the deep ocean. This transport occurs through biological production, deep convection and subsequent transport via the deep western boundary current. For an ensemble of 11 CMIP5-models, we studied the efficiency of this transport and identified two indicators of contemporary model behavior that are highly correlated with a model´s projected future carbon-uptake. The first indicator is the high latitude summer pCO<sub>2</sub><sup>sea</sup>-anomaly of a model, which is tightly linked to winter mixing and nutrient supply, but also to deep convection. The second indicator is the fraction of the anthropogenic carbon-inventory stored below 1000-m depth, indicating how efficient carbon is transported into the deep ocean. By comparing to the observational database, these indicators allow us to better constrain the model ensemble, and demonstrate that the models with more efficient surface to deep transport are best aligned with current observations. These models also show the largest future North Atlantic carbon uptake, which we then conclude is the more plausible future evolution. We further study if the high correlations between our contemporary indicators and a model´s future North Atlantic carbon uptake is also upheld for the next model generation, CMIP6. We hypothesize that this is the case and that our indicators can not only help us to constrain the CMIP6 model ensemble but also inform us about progress made between CMIP5 and CMIP6 in terms of North Atlantic carbon uptake, winter mixing, nutrient supply, deep convection and transport of carbon into the deep ocean.</p>


2021 ◽  
Vol 56 (7-8) ◽  
pp. 2027-2056
Author(s):  
Sandra M. Plecha ◽  
Pedro M. M. Soares ◽  
Susana M. Silva-Fernandes ◽  
William Cabos

2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2012 ◽  
Vol 8 (5) ◽  
pp. 1581-1598 ◽  
Author(s):  
V. Mariotti ◽  
L. Bopp ◽  
A. Tagliabue ◽  
M. Kageyama ◽  
D. Swingedouw

Abstract. Marine sediments records suggest large changes in marine productivity during glacial periods, with abrupt variations especially during the Heinrich events. Here, we study the response of marine biogeochemistry to such an event by using a biogeochemical model of the global ocean (PISCES) coupled to an ocean-atmosphere general circulation model (IPSL-CM4). We conduct a 400-yr-long transient simulation under glacial climate conditions with a freshwater forcing of 0.1 Sv applied to the North Atlantic to mimic a Heinrich event, alongside a glacial control simulation. To evaluate our numerical results, we have compiled the available marine productivity records covering Heinrich events. We find that simulated primary productivity and organic carbon export decrease globally (by 16% for both) during a Heinrich event, albeit with large regional variations. In our experiments, the North Atlantic displays a significant decrease, whereas the Southern Ocean shows an increase, in agreement with paleo-productivity reconstructions. In the Equatorial Pacific, the model simulates an increase in organic matter export production but decreased biogenic silica export. This antagonistic behaviour results from changes in relative uptake of carbon and silicic acid by diatoms. Reasonable agreement between model and data for the large-scale response to Heinrich events gives confidence in models used to predict future centennial changes in marine production. In addition, our model allows us to investigate the mechanisms behind the observed changes in the response to Heinrich events.


2018 ◽  
Vol 15 (8) ◽  
pp. 2289-2307 ◽  
Author(s):  
Nolwenn Lemaitre ◽  
Hélène Planquette ◽  
Frédéric Planchon ◽  
Géraldine Sarthou ◽  
Stéphanie Jacquet ◽  
...  

Abstract. The remineralisation of sinking particles by prokaryotic heterotrophic activity is important for controlling oceanic carbon sequestration. Here, we report mesopelagic particulate organic carbon (POC) remineralisation fluxes in the North Atlantic along the GEOTRACES-GA01 section (GEOVIDE cruise; May–June 2014) using the particulate biogenic barium (excess barium; Baxs) proxy. Important mesopelagic (100–1000 m) Baxs differences were observed along the transect depending on the intensity of past blooms, the phytoplankton community structure, and the physical forcing, including downwelling. The subpolar province was characterized by the highest mesopelagic Baxs content (up to 727 pmol L−1), which was attributed to an intense bloom averaging 6 mg chl a m−3 between January and June 2014 and by an intense 1500 m deep convection in the central Labrador Sea during the winter preceding the sampling. This downwelling could have promoted a deepening of the prokaryotic heterotrophic activity, increasing the Baxs content. In comparison, the temperate province, characterized by the lowest Baxs content (391 pmol L−1), was sampled during the bloom period and phytoplankton appear to be dominated by small and calcifying species, such as coccolithophorids. The Baxs content, related to oxygen consumption, was converted into a remineralisation flux using an updated relationship, proposed for the first time in the North Atlantic. The estimated fluxes were of the same order of magnitude as other fluxes obtained using independent methods (moored sediment traps, incubations) in the North Atlantic. Interestingly, in the subpolar and subtropical provinces, mesopelagic POC remineralisation fluxes (up to 13 and 4.6 mmol C m−2 d−1, respectively) were equalling and occasionally even exceeding upper-ocean POC export fluxes, deduced using the 234Th method. These results highlight the important impact of the mesopelagic remineralisation on the biological carbon pump of the studied area with a near-zero, deep (> 1000 m) carbon sequestration efficiency in spring 2014.


2008 ◽  
Vol 21 (5) ◽  
pp. 1029-1047 ◽  
Author(s):  
James A. Carton ◽  
Semyon A. Grodsky ◽  
Hailong Liu

Abstract A new monthly uniformly gridded analysis of mixed layer properties based on the World Ocean Atlas 2005 global ocean dataset is used to examine interannual and longer changes in mixed layer properties during the 45-yr period 1960–2004. The analysis reveals substantial variability in the winter–spring depth of the mixed layer in the subtropics and midlatitudes. In the North Pacific an empirical orthogonal function analysis shows a pattern of mixed layer depth variability peaking in the central subtropics. This pattern occurs coincident with intensification of local surface winds and may be responsible for the SST changes associated with the Pacific decadal oscillation. Years with deep winter–spring mixed layers coincide with years in which winter–spring SST is low. In the North Atlantic a pattern of winter–spring mixed layer depth variability occurs that is not so obviously connected to local changes in winds or SST, suggesting that other processes such as advection are more important. Interestingly, at decadal periods the winter–spring mixed layers of both basins show trends, deepening by 10–40 m over the 45-yr period of this analysis. The long-term mixed layer deepening is even stronger (50–100 m) in the North Atlantic subpolar gyre. At tropical latitudes the boreal winter mixed layer varies in phase with the Southern Oscillation index, deepening in the eastern Pacific and shallowing in the western Pacific and eastern Indian Oceans during El Niños. In boreal summer the mixed layer in the Arabian Sea region of the western Indian Ocean varies in response to changes in the strength of the southwest monsoon.


2016 ◽  
Vol 29 (20) ◽  
pp. 7203-7213 ◽  
Author(s):  
Alan J. Hewitt ◽  
Ben B. B. Booth ◽  
Chris D. Jones ◽  
Eddy S. Robertson ◽  
Andy J. Wiltshire ◽  
...  

Abstract The inclusion of carbon cycle processes within CMIP5 Earth system models provides the opportunity to explore the relative importance of differences in scenario and climate model representation to future land and ocean carbon fluxes. A two-way analysis of variance (ANOVA) approach was used to quantify the variability owing to differences between scenarios and between climate models at different lead times. For global ocean carbon fluxes, the variance attributed to differences between representative concentration pathway scenarios exceeds the variance attributed to differences between climate models by around 2025, completely dominating by 2100. This contrasts with global land carbon fluxes, where the variance attributed to differences between climate models continues to dominate beyond 2100. This suggests that modeled processes that determine ocean fluxes are currently better constrained than those of land fluxes; thus, one can be more confident in linking different future socioeconomic pathways to consequences of ocean carbon uptake than for land carbon uptake. The contribution of internal variance is negligible for ocean fluxes and small for land fluxes, indicating that there is little dependence on the initial conditions. The apparent agreement in atmosphere–ocean carbon fluxes, globally, masks strong climate model differences at a regional level. The North Atlantic and Southern Ocean are key regions, where differences in modeled processes represent an important source of variability in projected regional fluxes.


2014 ◽  
Vol 142 (2) ◽  
pp. 922-932 ◽  
Author(s):  
Jian Buchan ◽  
Joël J.-M. Hirschi ◽  
Adam T. Blaker ◽  
Bablu Sinha

Abstract Northern Europe experienced consecutive periods of extreme cold weather in the winter of 2009/10 and in late 2010. These periods were characterized by a tripole pattern in North Atlantic sea surface temperature (SST) anomalies and exceptionally negative phases of the North Atlantic Oscillation (NAO). A global ocean–atmosphere general circulation model (OAGCM) is used to investigate the ocean’s role in influencing North Atlantic and European climate. Observed SST anomalies are used to force the atmospheric model and the resultant changes in atmospheric conditions over northern Europe are examined. Different atmospheric responses occur in the winter of 2009/10 and the early winter of 2010. These experiments suggest that North Atlantic SST anomalies did not significantly affect the development of the negative NAO phase in the cold winter of 2009/10. However, in November and December 2010 the large-scale North Atlantic SST anomaly pattern leads to a significant shift in the atmospheric circulation over the North Atlantic toward a NAO negative phase. Therefore, these results indicate that SST anomalies in November/December 2010 were particularly conducive to the development of a negative NAO phase, which culminated in the extreme cold weather conditions experienced over northern Europe in December 2010.


2020 ◽  
Author(s):  
Laura Jackson ◽  
Clotilde Dubois ◽  
Gael Forget ◽  
Keith Haines ◽  
Matt Harrison ◽  
...  

<p>The observational network around the North Atlantic has improved significantly over the last few decades with the advent of Argo and satellite observations, and the more recent efforts to monitor the Atlantic Meridional Overturning Circulation (AMOC) using arrays such as RAPID and OSNAP. These have shown decadal timescale changes across the North Atlantic including in heat content, heat transport and the circulation. </p><p>However there are still significant gaps in the observational coverage, and significant uncertainties around some observational products. Ocean reanalyses integrate the observations with a dynamically consistent ocean model and are potentially tools that can be used to understand the observed changes. However the suitability of the reanalyses for the task must also be assessed.<br>We use an ensemble of global ocean reanalyses in comparison with observations in order to examine the mean state and interannual-decadal variability of the North Atlantic ocean since 1993. We assess how well the reanalyses are able to capture different processes and whether any understanding can be inferred. In particular we look at ocean heat content, transports, the AMOC and gyre strengths, water masses and convection. </p><p> </p>


2014 ◽  
Vol 6 (2) ◽  
pp. 397-418 ◽  
Author(s):  
Grzegorz KOSTRZEWA-ZORBAS

The greatest change ever in the defence policy and military strategy of the North Atlantic Treaty Organisation occurred in 2014 in response to a series of major cyber attacks against NATO member states and partner states - Estonia in 2007, the United States and Georgia in 2008, and others in later years - and to a general transformation of the security environment in which cyberwar and other threats to cybersecurity gain rapidly in importance. At the 2014 Wales Summit, NATO recognised that cyber defence is part of its central task of collective defence and that Article 5 of the North Atlantic Treaty - ”The Parties agree that an armed attack against one or more of them in Europe or North America shall be considered an attack against them all . . .” - can be invoked in the case of cyber attacks. This statement is the first and only expansion of the meaning of Article 5 and the first and only addition of a new type of warfare to the policy and strategy of NATO. After the change, the Alliance must face new challenges not less urgent and difficult than the old ones of kinetic warfare or weapons of mass destruction. This article addresses the broadest strategic context of the change. An analysis is made in the light of the global strategic thought and of the development of warfare through history. By entering the new strategic space of cyber warfare, NATO proves itself to be among the world’s most modern and advanced powers while, at the same time, it returns to the ancient - and lasting - tenet of strategy: information is not inferior to force. This way the Alliance moves away from Carl von Clausewitz and closer to Sun Zi. The recognition of cyberspace as a strategic space also corresponds to another influential idea in the heritage of strategy: the concept of the ”great common” the control of which is the key to the power over the world and over war and peace worldwide. Alfred Thayer Mahan considered the global ocean to be the ”great common” crossed by vital trade routes and by navies competing for superiority. Now cyberspace is as open, vital and fragile as the maritime space was in Mahan’s vision. Cyberwar also creates a promise and a temptation of a decisive strike - the first and last strike in a war - circumventing all military defences and paralysing the enemy country. It is a new version - less lethal or not, dependent on the tactics of cyber attacks in a cyber offensive - of the idea of strategic bombing and of the entire concept of air power, especially by its visionary Giulio Douhet, and then of nuclear strategy. Finally, the article provides two practical recommendations regarding the policy and structure of the North Atlantic Alliance in unfolding new era. Now NATO needs a speedy follow-on to the breakthrough decision of the Wales Summit. Cyber defence should be fully integrated into the next Strategic Concept which is expected in or around 2020 but could be worked out sooner because of the accelerating transition of the security environment. NATO should also consider establishing a global Cyber Command to maintain the initiative and to assure the credibility of the enlarged meaning of Article 5 of the North Atlantic Treaty. This credibility will be immediately, continuously and comprehensively tested by many players of the global game.


Sign in / Sign up

Export Citation Format

Share Document