scholarly journals A Global Glacial Ocean State Estimate Constrained by Upper-Ocean Temperature Proxies

2018 ◽  
Vol 31 (19) ◽  
pp. 8059-8079 ◽  
Author(s):  
Daniel E. Amrhein ◽  
Carl Wunsch ◽  
Olivier Marchal ◽  
Gael Forget

We use the method of least squares with Lagrange multipliers to fit an ocean general circulation model to the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) estimate of near sea surface temperature (NSST) at the Last Glacial Maximum (LGM; circa 23–19 thousand years ago). Compared to a modern simulation, the resulting global, last-glacial ocean state estimate, which fits the MARGO data within uncertainties in a free-running coupled ocean–sea ice simulation, has global-mean NSSTs that are 2°C lower and greater sea ice extent in all seasons in both the Northern and Southern Hemispheres. Increased brine rejection by sea ice formation in the Southern Ocean contributes to a stronger abyssal stratification set principally by salinity, qualitatively consistent with pore fluid measurements. The upper cell of the glacial Atlantic overturning circulation is deeper and stronger. Dye release experiments show similar distributions of Southern Ocean source waters in the glacial and modern western Atlantic, suggesting that LGM NSST data do not require a major reorganization of abyssal water masses. Outstanding challenges in reconstructing LGM ocean conditions include reducing effects from model biases and finding computationally efficient ways to incorporate abyssal tracers in global circulation inversions. Progress will be aided by the development of coupled ocean–atmosphere–ice inverse models, by improving high-latitude model processes that connect the upper and abyssal oceans, and by the collection of additional paleoclimate observations.

1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2016 ◽  
Author(s):  
Douglas G. MacMartin ◽  
Ben Kravitz

Abstract. Climate emulators trained on existing simulations can be used to project the climate effects that would result from different possible future pathways of anthropogenic forcing, without relying on general circulation model (GCM) simulations for every possible pathway. We extend this idea to include different amounts of solar geoengineering in addition to different pathways of green-house gas concentrations by training emulators from a multi-model ensemble of simulations from the Geoengineering Model Intercomparison Project (GeoMIP). The emulator is trained on the abrupt 4 x CO2 and a compensating solar reduction simulation (G1), and evaluated by comparing predictions against a simulated 1 % per year CO2 increase and a similarly smaller solar reduction (G2). We find reasonable agreement in most models for predicting changes in temperature and precipitation (including regional effects), and annual-mean Northern hemisphere sea ice extent, with the difference between simulation and prediction typically smaller than natural variability. This verifies that the linearity assumption used in constructing the emulator is sufficient for these variables over the range of forcing considered. Annual-minimum Northern hemisphere sea ice extent is less-well predicted, indicating the limits of the linearity assumption. For future pathways involving relatively small forcing from solar geoengineering, the errors introduced from nonlinear effects may be smaller than the uncertainty due to natural variability, and the emulator prediction may be a more accurate estimate of the forced component of the models' response than an actual simulation would be.


2021 ◽  
Author(s):  
Tristan Vadsaria ◽  
Sam Sherriff-Tadano ◽  
Ayako Abe-Ouchi ◽  
Takashi Obase ◽  
Wing-Le Chan ◽  
...  

<p>Southern Ocean sea ice and oceanic fronts are known to play an important role on the climate system, carbon cycles, bottom ocean circulation, and Antarctic ice sheet. However, many models of the previous Past-climate Model Intercomparison Project (PMIP) underestimated sea-ice extent (SIE) for the Last Glacial Maximum (LGM)(Roche et al., 2012; Marzocchi and Jensen, 2017), mainly because of surface bias (Flato et al., 2013) that may have an impact on mean ocean temperature (MOT). Indeed, recent studies further suggest an important link between Southern Ocean sea ice and mean ocean temperature (Ferrari et al., 2014; Bereiter et al., 2018 among others). Misrepresent the Antarctic sea-ice extent could highly impact deep ocean circulation, the heat transport and thus the MOT. In this study, we will stress the relationship between the distribution of Antarctic sea-ice extent and the MOT through the analysis of the PMIP3 and PMIP4 exercise and by using a set of MIROC models. To date, the latest version of MIROC improve its representation of the LGM Antarctic sea-ice extent, affecting the deep circulation and the MOT distribution (Sherriff-Tadano et al., under review).</p><p>Our results show that available PMIP4 models have an overall improvement in term of LGM sea-ice extent compared to PMIP3, associated to colder deep and bottom ocean temperature. Focusing on MIROC (4m) models, we show that models accounting for Southern Ocean sea-surface temperature (SST) bias correction reproduce an Antarctic sea-ice extent, 2D-distribution, and seasonal amplitude in good agreement with proxy-based data. Finally, using PMIP-MIROC analyze, we show that it exists a relationship between the maximum SIE and the MOT, modulated by the Antarctic intermediate and bottom waters.</p>


2019 ◽  
Vol 49 (10) ◽  
pp. 2553-2570 ◽  
Author(s):  
Mads B. Poulsen ◽  
Markus Jochum ◽  
James R. Maddison ◽  
David P. Marshall ◽  
Roman Nuterman

AbstractAn interpretation of eddy form stress via the geometry described by the Eliassen–Palm flux tensor is explored. Complimentary to previous works on eddy Reynolds stress geometry, this study shows that eddy form stress is fully described by a vertical ellipse, whose size, shape, and orientation with respect to the mean flow shear determine the strength and direction of vertical momentum transfers. Following a recent proposal, this geometric framework is here used to form a Gent–McWilliams eddy transfer coefficient that depends on eddy energy and a nondimensional geometric parameter α, bounded in magnitude by unity. The parameter α expresses the efficiency by which eddies exchange energy with baroclinic mean flow via along-gradient eddy buoyancy flux—a flux equivalent to eddy form stress along mean buoyancy contours. An eddy-resolving ocean general circulation model is used to estimate the spatial structure of α in the Southern Ocean and assess its potential to form a basis for parameterization. The eddy efficiency α averages to a low but positive value of 0.043 within the Antarctic Circumpolar Current, consistent with an inefficient eddy field extracting energy from the mean flow. It is found that the low eddy efficiency is mainly the result of that eddy buoyancy fluxes are weakly anisotropic on average. The eddy efficiency is subject to pronounced vertical structure and is maximum at ~3-km depth, where eddy buoyancy fluxes tend to be directed most downgradient. Since α partly sets the eddy form stress in the Southern Ocean, a parameterization for α must reproduce its vertical structure to provide a faithful representation of vertical stress divergence and eddy forcing.


2011 ◽  
Vol 7 (1) ◽  
pp. 249-263 ◽  
Author(s):  
A. Voigt ◽  
D. S. Abbot ◽  
R. T. Pierrehumbert ◽  
J. Marotzke

Abstract. We study the initiation of a Marinoan Snowball Earth (~635 million years before present) with the state-of-the-art atmosphere-ocean general circulation model ECHAM5/MPI-OM. This is the most sophisticated model ever applied to Snowball initiation. A comparison with a pre-industrial control climate shows that the change of surface boundary conditions from present-day to Marinoan, including a shift of continents to low latitudes, induces a global-mean cooling of 4.6 K. Two thirds of this cooling can be attributed to increased planetary albedo, the remaining one third to a weaker greenhouse effect. The Marinoan Snowball Earth bifurcation point for pre-industrial atmospheric carbon dioxide is between 95.5 and 96% of the present-day total solar irradiance (TSI), whereas a previous study with the same model found that it was between 91 and 94% for present-day surface boundary conditions. A Snowball Earth for TSI set to its Marinoan value (94% of the present-day TSI) is prevented by doubling carbon dioxide with respect to its pre-industrial level. A zero-dimensional energy balance model is used to predict the Snowball Earth bifurcation point from only the equilibrium global-mean ocean potential temperature for present-day TSI. We do not find stable states with sea-ice cover above 55%, and land conditions are such that glaciers could not grow with sea-ice cover of 55%. Therefore, none of our simulations qualifies as a "slushball" solution. While uncertainties in important processes and parameters such as clouds and sea-ice albedo suggest that the Snowball Earth bifurcation point differs between climate models, our results contradict previous findings that Snowball Earth initiation would require much stronger forcings.


2006 ◽  
Vol 19 (17) ◽  
pp. 4436-4447 ◽  
Author(s):  
C. D. Hewitt ◽  
A. J. Broccoli ◽  
M. Crucifix ◽  
J. M. Gregory ◽  
J. F. B. Mitchell ◽  
...  

Abstract The commonly held view of the conditions in the North Atlantic at the last glacial maximum, based on the interpretation of proxy records, is of large-scale cooling compared to today, limited deep convection, and extensive sea ice, all associated with a southward displaced and weakened overturning thermohaline circulation (THC) in the North Atlantic. Not all studies support that view; in particular, the “strength of the overturning circulation” is contentious and is a quantity that is difficult to determine even for the present day. Quasi-equilibrium simulations with coupled climate models forced by glacial boundary conditions have produced differing results, as have inferences made from proxy records. Most studies suggest the weaker circulation, some suggest little or no change, and a few suggest a stronger circulation. Here results are presented from a three-dimensional climate model, the Hadley Centre Coupled Model version 3 (HadCM3), of the coupled atmosphere–ocean–sea ice system suggesting, in a qualitative sense, that these diverging views could all have occurred at different times during the last glacial period, with different modes existing at different times. One mode might have been characterized by an active THC associated with moderate temperatures in the North Atlantic and a modest expanse of sea ice. The other mode, perhaps forced by large inputs of meltwater from the continental ice sheets into the northern North Atlantic, might have been characterized by a sluggish THC associated with very cold conditions around the North Atlantic and a large areal cover of sea ice. The authors’ model simulation of such a mode, forced by a large input of freshwater, bears several of the characteristics of the Climate: Long-range Investigation, Mapping, and Prediction (CLIMAP) Project’s reconstruction of glacial sea surface temperature and sea ice extent.


2012 ◽  
Vol 8 (4) ◽  
pp. 2445-2475 ◽  
Author(s):  
A. Voigt ◽  
D. S. Abbot

Abstract. The Snowball Earth bifurcation, or runaway ice-albedo feedback, is defined for particular boundary conditions by a critical CO2 and a critical sea-ice cover (SI), both of which are essential for evaluating hypotheses related to Neoproterozoic glaciations. Previous work has shown that the Snowball Earth bifurcation, denoted as (CO2, SI)*, differs greatly among climate models. Here, we revisit the initiation of a Snowball Earth in the atmosphere-ocean general circulation model ECHAM5/MPI-OM for Marinoan (~630 Ma) continents and solar insolation decreased to 94%. In its standard setup, ECHAM5/MPI-OM initiates a Snowball Earth much more easily than other climate models at (CO2, SI)* ≈ (500 ppm, 55%). Previous work has shown that the Snowball Earth bifurcation can be pushed equatorward if a low bare sea ice albedo is assumed because bare sea ice is exposed by net evaporation in the descent region of the Hadley circulation. Consistent with this, when we replace the model's standard bare sea-ice albedo of 0.75 by a much lower value of 0.45, we find (CO2, SI)* ≈ (204 ppm, 70%). When we additionally disable sea-ice dynamics, we find that the Snowball Earth bifurcation can be pushed even closer to the equator and occurs at a much lower CO2: (CO2, SI)* ≈ (2 ppm, 85%). Therefore, both lowering the bare sea-ice albedo and disabling sea-ice dynamics increase the critical sea-ice cover in ECHAM5/MPI-OM, but sea-ice dynamics have a much larger influence on the critical CO2. For disabled sea-ice dynamics, the state with 85% sea-ice cover is stabilized by the Jormungand mechanism and shares characteristics with the Jormungand climate states. However, there is no Jormungand bifurcation between this Jormungand-like state and states with mid-latitude sea-ice margins. Our results indicate that differences in sea-ice dynamics schemes can be as important as sea ice albedo for causing the spread in climate model's estimates of the location of the Snowball Earth bifurcation.


2016 ◽  
Author(s):  
Christoph Heinze ◽  
Babette Hoogakker ◽  
Arne Winguth

Abstract. What role did changes in marine carbon cycle processes and calcareous organisms play for glacial-interglacial variation in atmospheric pCO2? In order to answer this question, we explore results from an ocean biogeochemical ocean general circulation model. We make an attempt to systematically reconcile model results with time dependent sediment core data from the observations. For this purpose, simulated sensitivities of oceanic tracer concentrations to changes in governing carbon cycle parameters are fitted to measured sediment core data.We assume that the time variation of the governing carbon cycle parameters follows the general pattern of the glacial-interglacial deuterium anomaly. Our analysis provides an independent estimate of a maximum mean sea surface temperature drawdown of about 5 °C and a maximum outgassing of the land biosphere by about 430 PgC at the last glacial maximum as compared to preindustrial times. The overall fit of modelled paleoclimate tracers to observations, however, remains quite weak indicating the potential of more detailed modelling studies for full exploitation of the information as stored in the paleo-climatic archive. It can be confirmed, however, that a decline in ocean temperature and a more efficient biological carbon pump in combination with changes in ocean circulation are the key factors for explaining the glacial CO2 drawdown. The analysis suggests that potential changes in the export rain ratio POC:CaCO3 may not have a substantial imprint on the paleo-climatic archive. The use of the last glacial as an inverted analogue to potential ocean acidification impacts thus may be quite limited. A potential strong decrease in CaCO3 export production could contribute to the glacial CO2 decline in the atmosphere but remains hypothetical.


1997 ◽  
Vol 25 ◽  
pp. 116-120 ◽  
Author(s):  
S. Legutke ◽  
E. Maier-Reimkr ◽  
A. Stössel ◽  
A. Hellbach

A global ocean general circulation model has been coupled with a dynamic thermodynamic sea-ice model. This model has been spun-up in a 1000 year integration using daily atmosphere model data. Main water masses and currents are reproduced as well as the seasonal characteristics of the ice cover of the Northern and Southern Hemispheres. Model results for the Southern Ocean, however, show the ice cover as too thin, and there are large permanent polynyas in the Weddell and Ross Seas. These polynyas are due to a large upward oceanic heat flux caused by haline rejection during the freezing of sea ice. Sensitivity studies were performed to test several ways of treating the sea-surface salinity and the rejected brine. The impact on the ice cover, water-mass characteristics, and ocean circulation are described.


Sign in / Sign up

Export Citation Format

Share Document