scholarly journals Summer Atmospheric Heat Sources over the Western–Central Tibetan Plateau: An Integrated Analysis of Multiple Reanalysis and Satellite Datasets

2019 ◽  
Vol 32 (4) ◽  
pp. 1181-1202 ◽  
Author(s):  
Zhiling Xie ◽  
Bin Wang

Multiple bias-corrected top-quality reanalysis datasets, gauge-based observations, and selected satellite products are synthetically employed to revisit the climatology and variability of the summer atmospheric heat sources over the Tibetan Plateau (TP). Verification-based selection and ensemble-mean methods are utilized to combine various datasets. Different from previous works, this study pays special attention to estimating the total heat source (TH) and its components over the data-void western plateau (70°–85°E), including the surface sensible heat (SH), latent heat released by precipitation (LH), and net radiation flux (RD). Consistent with previous studies, the climatology of summer SH (LH) typically increases (decreases) from southeast to northwest. Generally, LH dominates TH over most of the TP. A notable new finding is a minimum TH area over the high-altitude region of the northwestern TP, where the Karakoram mountain range is located. We find that during the period of 1984–2006, TH shows insignificant trends over the eastern and central TP, whereas it exhibits an evident increasing trend over the western TP that is attributed to the rising tendency of LH before 1996 and to that of RD after 1996. The year-to-year variation of TH over the central–eastern TP is highly correlated with that of LH, but that is not the case over the western TP. It is also worth noting that the variations of TH in each summer month are not significantly correlated with each other, and hence study of the interannual variation of the TP heat sources should consider the remarkable subseasonal variations.

2008 ◽  
Author(s):  
Shanshan Zhong ◽  
Jinhai He ◽  
Zhaoyong Guan ◽  
Chunhua Shi

2015 ◽  
Vol 15 (11) ◽  
pp. 6007-6021 ◽  
Author(s):  
Z. L. Lüthi ◽  
B. Škerlak ◽  
S.-W. Kim ◽  
A. Lauer ◽  
A. Mues ◽  
...  

Abstract. The Himalayas and the Tibetan Plateau region (HTP), despite being a remote and sparsely populated area, is regularly exposed to polluted air masses with significant amounts of aerosols including black carbon. These dark, light-absorbing particles are known to exert a great melting potential on mountain cryospheric reservoirs through albedo reduction and radiative forcing. This study combines ground-based and satellite remote sensing data to identify a severe aerosol pollution episode observed simultaneously in central Tibet and on the southern side of the Himalayas during 13–19 March 2009 (pre-monsoon). Trajectory calculations based on the high-resolution numerical weather prediction model COSMO are used to locate the source regions and study the mechanisms of pollution transport in the complex topography of the HTP. We detail how polluted air masses from an atmospheric brown cloud (ABC) over South Asia reach the Tibetan Plateau within a few days. Lifting and advection of polluted air masses over the great mountain range is enabled by a combination of synoptic-scale and local meteorological processes. During the days prior to the event, winds over the Indo-Gangetic Plain (IGP) are generally weak at lower levels, allowing for accumulation of pollutants and thus the formation of ABCs. The subsequent passing of synoptic-scale troughs leads to southwesterly flow in the middle troposphere over northern and central India, carrying the polluted air masses across the Himalayas. As the IGP is known to be a hotspot of ABCs, the cross-Himalayan transport of polluted air masses may have serious implications for the cryosphere in the HTP and impact climate on regional to global scales. Since the current study focuses on one particularly strong pollution episode, quantifying the frequency and magnitude of similar events in a climatological study is required to assess the total impact.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yandong Hou ◽  
Hao Long ◽  
Lei Gao ◽  
Ji Shen

AbstractLuminescence dating technology has been used for chronological constraints on lacustrine sediments due to the ubiquitous materials (e.g., quartz and feldspar) as dosimeters, and a relatively long dating range, compared with the commonly used radiocarbon dating method. However, quartz dating on the Tibetan Plateau may suffer from dim and unstable luminescence signals. In the current study, we investigate a lake-related outcrop from the shore of Cuoe Lake on the central Tibetan Plateau. Both coarse-grained quartz and K-feldspar fractions were extracted, and OSL and post-IR IRSL signals were measured from these fractions, respectively. Combining the stratigraphy analysis and dating results, this study shows that: (1) quartz appears to be unsuitable for dating because of very dim natural signals and even anomalous fading (average g-value: 4.30 ± 2.51 %/decade). The suitability of the applied pIRIR protocol measured at 150°C (pIRIR150) for K-feldspar samples was confirmed by a set of luminescence tests; (2) compared with the luminescence-based chronology, the 14C age of shells from the same sediment layer yielded older age by ~7 ka, which is likely attributed to hard water reservoir effect in Cuoe Lake; (3) the lake level reached its peak and maintained high-stand during the early Holocene (~9.4–7.1 ka). This study highlights the applicability of K-feldspar luminescence dating when the counterpart quartz OSL is insensitive and encounters anomalous fading.


2020 ◽  
Vol 132 (9-10) ◽  
pp. 2202-2220 ◽  
Author(s):  
Yue Tang ◽  
Qing-Guo Zhai ◽  
Sun-Lin Chung ◽  
Pei-Yuan Hu ◽  
Jun Wang ◽  
...  

Abstract The Meso-Tethys was a late Paleozoic to Mesozoic ocean basin between the Cimmerian continent and Gondwana. Part of its relicts is exposed in the Bangong–Nujiang suture zone, in the north-central Tibetan Plateau, that played a key role in the evolution of the Tibetan plateau before the India-Asia collision. A Penrose-type ophiolitic sequence was newly discovered in the Ren Co area in the middle of the Bangong–Nujiang suture zone, which comprises serpentinized peridotites, layered and isotropic gabbros, sheeted dikes, pillow and massive basalts, and red cherts. Zircon U-Pb dating of gabbros and plagiogranites yielded 206Pb/238U ages of 169–147 Ma, constraining the timing of formation of the Ren Co ophiolite. The mafic rocks (i.e., basalt, diabase, and gabbro) in the ophiolite have uniform geochemical compositions, coupled with normal mid-ocean ridge basalt-type trace element patterns. Moreover, the samples have positive whole-rock εNd(t) [+9.2 to +8.3], zircon εHf(t) [+17 to +13], and mantle-like δ18O (5.8–4.3‰) values. These features suggest that the Ren Co ophiolite is typical of mid-ocean ridge-type ophiolite that is identified for the first time in the Bangong–Nujiang suture zone. We argue that the Ren Co ophiolite is the relic of a fast-spreading ridge that occurred in the main oceanic basin of the Bangong–Nujiang segment of Meso-Tethys. Here the Meso-Tethyan orogeny involves a continuous history of oceanic subduction, accretion, and continental assembly from the Early Jurassic to Early Cretaceous.


Zootaxa ◽  
2019 ◽  
Vol 4656 (3) ◽  
pp. 535-544
Author(s):  
ANDREAS LAUG ◽  
LADISLAV HAMERLÍK ◽  
STEN ANSLAN ◽  
STEFAN ENGELS ◽  
FALKO TURNER ◽  
...  

High mountain ranges such as the Tibetan Plateau with an average altitude above 4500 m are topographically complex formations. Elevational gradients, physiographic diversity and climatic heterogeneity have led to highly biodiverse ecosystems in these regions. Mountain ranges can be seen as cradles of evolution and harbour, due to their unique characteristics, a high number of highly adapted species. At the same time these areas are hard to access and therefore taxonomic information is limited. Here we describe a new Acricotopus (Diptera: Chironomidae: Orthocladiinae) larval morphotype occurring in lakes and ponds of differing salinity and water depths located on the Southern and Central Tibetan Plateau. The description is based on larvae and their genetics (ribosomal 18S, 28S and mitochondrial COI sequences) collected from a shallow pond in close proximity to the large saline lake Selin Co. Larvae of Acricotopus indet. morphotype incurvatus are characterized by a mentum with a cluster of lateral teeth, partially folded inwards, a mandible with a toothed lobe in addition to four inner teeth and a sclerotized plate positioned behind the mentum. Up to now, these morphological features have only been found in early instars of other Acricotopus species. The proposed morphotype name is inspired by the peculiar form of the mentum. 


Sign in / Sign up

Export Citation Format

Share Document