scholarly journals Recent Strengthening of Greenland Blocking Drives Summertime Surface Warming over Northern Canada and Eastern Siberia

2019 ◽  
Vol 32 (11) ◽  
pp. 3263-3278 ◽  
Author(s):  
Sai Wang ◽  
Debashis Nath ◽  
Wen Chen ◽  
Lin Wang

Abstract In the last three decades, rapid surface warming is observed in the land areas of northern high latitudes during boreal summer months. Although the warming trend is thought to be driven by early snowmelt, the exact causes, especially its relationship with atmospheric circulation changes, remain a subject of debate. By analyzing ERA-Interim data, this study examines the possible factors for rapid subarctic warming. It is found that more than half of the warming trend over the entire subarctic and 80% over northern Canada and eastern Siberia (regions with maximum amplification) can be explained by enhanced downward infrared radiation (IR). Downward IR is largely driven by horizontal atmospheric moisture flux convergence and warm-air advection. The positive trend in geopotential height over the Greenland region is key for moisture flux convergence over northern Canada and eastern Siberia through changes in the storm tracks. An enhanced summertime blocking activity in the Greenland region seems responsible for the positive trend in geopotential heights.

2009 ◽  
Vol 10 (2) ◽  
pp. 353-373 ◽  
Author(s):  
Vasubandhu Misra ◽  
P. A. Dirmeyer

Abstract Multidecadal simulations over the continental United States by an atmospheric general circulation model coupled to an ocean general circulation model is compared with that forced by observed sea surface temperature (SST). The differences in the mean and the variability of precipitation are found to be larger in the boreal summer than in the winter. This is because the mean SST differences in the two simulations are qualitatively comparable between the two seasons. The analysis shows that, in the boreal summer season, differences in moisture flux convergence resulting from changes in the circulation between the two simulations initiate and sustain changes in precipitation between them. This difference in precipitation is, however, further augmented by the contributions from land surface evaporation, resulting in larger differences of precipitation between the two simulations. However, in the boreal winter season, despite differences in the moisture flux convergence between the two model integrations, the precipitation differences over the continental United States are insignificant. It is also shown that land–atmosphere feedback is comparatively much weaker in the boreal winter season.


Author(s):  
Chang-Hoi Ho ◽  
Chang-Kyun Park ◽  
Jeongmin Yun ◽  
Eun-Ju Lee ◽  
Jinwon Kim ◽  
...  

Abstract Global warming and its associated changes in the timing of seasonal progression may produce substantial ripple effects on the regional climate and ecosystem. This study analyzes the surface air temperature recorded during the period 1919–2017 at seven stations in the Republic of Korea to investigate the long-term changes at the beginning and ending of the summer season and their relationship with the warming trends of spring and autumn. The temperatures at the starting (June 1) and ending (August 31) dates of the past period (1919–1948) advanced by 13 days and delayed by 4 days, respectively, for the recent period (1988–2017). This asymmetric change was caused by continuous warming in May for the entire period of analysis and an abrupt warming in September in the recent decades. Different amplitudes of the expansion of the western North Pacific subtropical high in May and September are responsible for the asymmetric expansion of the summer season. The projections of surface warming for spring and autumn in Korea used the downscaled grid data of a regional climate model, which were obtained by the Representative Concentration Pathway 8.5 scenario of a general circulation model, and indicated a continuous positive trend until 2100. Larger interannual variability of blooming timing of early autumn flowers than that of late spring flowers may represent the response of the ecosystem to the seasonally asymmetric surface warming. Results suggest that the shift of seasons and associated warming trend have a disturbing effect on an ecosystem, and this trend will intensify in the future.


Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Lahouari Bounoua ◽  
Kurtis Thome ◽  
Joseph Nigro

Urbanization is a complex land transformation not explicitly resolved within large-scale climate models. Long-term timeseries of high-resolution satellite data are essential to characterize urbanization within land surface models and to assess its contribution to surface temperature changes. The potential for additional surface warming from urbanization-induced land use change is investigated and decoupled from that due to change in climate over the continental US using a decadal timescale. We show that, aggregated over the US, the summer mean urban-induced surface temperature increased by 0.15 °C, with a warming of 0.24 °C in cities built in vegetated areas and a cooling of 0.25 °C in cities built in non-vegetated arid areas. This temperature change is comparable in magnitude to the 0.13 °C/decade global warming trend observed over the last 50 years caused by increased CO2. We also show that the effect of urban-induced change on surface temperature is felt above and beyond that of the CO2 effect. Our results suggest that climate mitigation policies must consider urbanization feedback to put a limit on the worldwide mean temperature increase.


2013 ◽  
Vol 26 (19) ◽  
pp. 7662-7675 ◽  
Author(s):  
Kyong-Hwan Seo ◽  
Jung Ok ◽  
Jun-Hyeok Son ◽  
Dong-Hyun Cha

Abstract Future changes in the East Asian summer monsoon (EASM) are estimated from historical and Representative Concentration Pathway 6.0 (RCP6) experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The historical runs show that, like the CMIP3 models, the CMIP5 models produce slightly smaller precipitation. A moisture budget analysis illustrates that this precipitation deficit is due to an underestimation in evaporation and ensuing moisture flux convergence. Of the two components of the moisture flux convergence (i.e., moisture convergence and horizontal moist advection), moisture convergence associated with mass convergence is underestimated to a greater degree. Precipitation is anticipated to increase by 10%–15% toward the end of the twenty-first century over the major monsoonal front region. A statistically significant increase is predicted to occur mostly over the Baiu region and to the north and northeast of the Korean Peninsula. This increase is attributed to an increase in evaporation and moist flux convergence (with enhanced moisture convergence contributing the most) induced by the northwestward strengthening of the North Pacific subtropical high (NPSH), a characteristic feature of the future EASM that occurred in CMIP5 simulations. Along the northern and northwestern flank of the strengthened NPSH, intensified southerly or southwesterly winds lead to the increase in moist convergence, enhancing precipitation over these areas. However, future precipitation over the East China Sea is projected to decrease. In the EASM domain, a local mechanism prevails, with increased moisture and moisture convergence leading to a greater increase in moist static energy in the lower troposphere than in the upper troposphere, reducing tropospheric stability.


2021 ◽  
Author(s):  
Daichi Takabatake ◽  
Masaru Inatsu

Abstract We analyzed a large ensemble dataset called the database for Policy Decision Making for Future climate change (d4PDF), which contains 60-km resolution atmospheric general circulation model output and 20-km resolution dynamical downscaling for the Japanese domain. The increase in moisture and precipitation, and their global warming response in June–July–August were described focusing on the differences between Hokkaido and Kyushu. The results suggested that the specific humidity increased almost following the Clausius Clapeyron relation, but the change in stationary circulation suppressed the precipitation increase, except for in western Kyushu. The + 4 K climate in Hokkaido would be as hot and humid as the present climate in Kyushu. The circulation change related to the southward shift of the jet stream and an eastward shift of the Bonin high weakened the moisture flux convergence via a stationary field over central Japan including eastern Kyushu. The transient eddy activity counteracted the increase in humidity, so that the moisture flux convergence and precipitation did not change much over Hokkaido. Because the contribution of tropical cyclones to the total precipitation was at most 10%, the decrease in the number of tropical cyclones did not explain the predicted change in precipitation.


2018 ◽  
Vol 31 (23) ◽  
pp. 9565-9584 ◽  
Author(s):  
Sun Wong ◽  
Catherine M. Naud ◽  
Brian H. Kahn ◽  
Longtao Wu ◽  
Eric J. Fetzer

Precipitation (from TMPA) and cloud structures (from MODIS) in extratropical cyclones (ETCs) are modulated by phases of large-scale moisture flux convergence (from MERRA-2) in the sectors of ETCs, which are studied in a new coordinate system with directions of both surface warm fronts (WFs) and surface cold fronts (CFs) fixed. The phase of moisture flux convergence is described by moisture dynamical convergence Qcnvg and moisture advection Qadvt. Precipitation and occurrence frequencies of deep convective clouds are sensitive to changes in Qcnvg, while moisture tendency is sensitive to changes in Qadvt. Increasing Qcnvg and Qadvt during the advance of the WF is associated with increasing occurrences of both deep convective and high-level stratiform clouds. A rapid decrease in Qadvt with a relatively steady Qcnvg during the advance of the CF is associated with high-level cloud distribution weighting toward deep convective clouds. Behind the CF (cold sector or area with polar air intrusion), the moisture flux is divergent with abundant low- and midlevel clouds. From deepening to decaying stages, the pre-WF and WF sectors experience high-level clouds shifting to more convective and less stratiform because of decreasing Qadvt with relatively steady Qcnvg, and the CF experiences shifting from high-level to midlevel clouds. Sectors of moisture flux divergence are less influenced by cyclone evolution. Surface evaporation is the largest in the cold sector and the CF during the deepening stage. Deepening cyclones are more efficient in poleward transport of water vapor.


2019 ◽  
Vol 53 (5-6) ◽  
pp. 3561-3582 ◽  
Author(s):  
Mohammad Darand ◽  
Farshad Pazhoh

2006 ◽  
Vol 134 (2) ◽  
pp. 598-617 ◽  
Author(s):  
Arun Chakraborty ◽  
Swadhin K. Behera ◽  
Milind Mujumdar ◽  
Ryohji Ohba ◽  
Toshio Yamagata

Abstract A diagnostic study of atmospheric moisture data over Saudi Arabia derived from a 43-yr National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis revealed that moisture convergence in the lower troposphere and divergence in and above the middle troposphere occurs throughout the year. Although the amount of precipitable water content in the middle troposphere is high, precipitation is less than expected over this semiarid region during a boreal summer monsoon season because of strong moisture divergence. The net tropospheric moisture flux over the arid and semiarid regions of Saudi Arabia shows seasonal and interannual variability. The seasonal variability has a strong semiannual signal with its primary peak February–April and its secondary peak June–August. This pattern is consistent with a similar semiannual signal observed in rainfall climatology. The restricted moisture supply to southwestern Saudi Arabia during summer presumably explains the lack of precipitation in other areas of the country. Winter precipitation, however, is widespread. The increased transport of net atmospheric moisture flux is higher during El Niño and positive Indian Ocean dipole (IOD) phenomena. During these events, influx across the Red Sea (west) side of Saudi Arabia increases. The net flux to the region is reduced by a slight increase of outflux across the Persian Gulf (east) side. Reanalysis data and model-sensitivity experiments show that El Niño or a concurrent positive IOD and El Niño event more strongly amplify net transport than does an independent positive IOD event. The partial-lag correlation analysis with net moisture flux from the Red Sea side shows that the positive IOD mode has a peak correlation coefficient of ∼0.5 with close to a 5-month lead and that El Niño has a peak correlation coefficient of ∼0.6 with close to a 2-month lead.


Sign in / Sign up

Export Citation Format

Share Document