ENSO Precipitation Anomalies along the Equatorial Pacific: Moist Static Energy Framework Diagnostics

2020 ◽  
Vol 33 (21) ◽  
pp. 9103-9127
Author(s):  
H. Annamalai

AbstractWith the recognition that equatorial Pacific precipitation anomalies are fundamental to global teleconnections during ENSO winters, the present research applies vertically integrated moist static energy (MSE) budget analysis to historical simulations of CMIP5 models. Process-based assessment is carried out to understand if the models capture the differing processes that account for regional precipitation anomalies along the equatorial Pacific and to isolate a few leading processes that account for the diversified precipitation response to similar SST forcing and vice versa. To assess SST biases in CMIP5, analysis is also carried out in AMIP5 solutions. Diagnostics reveal that models have limitations in representing the “sign” of MSE sources and sinks and, even if they do, compensating errors dominate the budget. The diverse response in precipitation depends on model parameterizations that determine anomalous net radiative flux divergence in the column, free troposphere moisture, and MSE export out of the column, although these processes are not independent. Diagnostics derived from AMIP5 solutions support the findings from CMIP5. The implication is that biases in representing any one of these processes are expected to imprint on others, acknowledging the tight connections among moisture, convection, and radiation. CMIP5 models have limitations in representing the basic states in SST and precipitation over the Niño-3.4 region, and the different convective regimes over the equatorial central and eastern Pacific regions with implications for ENSO. Study limitations are that MSE sources/sinks depend on parameterizations and their interactions, making it difficult to isolate one particular process for attribution. Budgets estimated from monthly anomalies do not capture contributions from high-frequency variability that are vital in closing the budgets.

2020 ◽  
Vol 33 (5) ◽  
pp. 1619-1641 ◽  
Author(s):  
Jie Feng ◽  
Tao Lian ◽  
Jun Ying ◽  
Junde Li ◽  
Gen Li

AbstractWhether the state-of-the-art CMIP5 models have different El Niño types and how the degree of modeled El Niño diversity would be impacted by the future global warming are still heavily debated. In this study, cluster analysis is used to investigate El Niño diversity in 30 CMIP5 models. As the method does not rely on any prior knowledge of the patterns of El Niño seen in observations, it provides a practical way to identify the degree of El Niño diversity in models. Under the historical scenario, most models show a poor degree of El Niño diversity in their own model world, primarily due to the lopsided numbers of events belonging to the two modeled El Niño types and the weak compactness of events in each cluster. Four models are found showing significant El Niño diversity, yet none of them captures the longitudinal distributions of the warming centers of the two El Niño types seen in the observations. Heat budget analysis of the sea surface temperature (SST) anomaly suggests that the degree of modeled El Niño diversity is highly related to the climatological zonal SST gradient over the western-central equatorial Pacific in models. As the gradient is weakened in most models under the future high-emission scenario, the degree of modeled El Niño diversity is further reduced in the future. The results indicate that a better simulation of the SST gradient over the western-central equatorial Pacific might allow a more reliable simulation/projection of El Niño diversity in most CMIP5 models.


2013 ◽  
Vol 26 (8) ◽  
pp. 2417-2431 ◽  
Author(s):  
Qiongqiong Cai ◽  
Guang J. Zhang ◽  
Tianjun Zhou

Abstract The role of shallow convection in Madden–Julian oscillation (MJO) simulation is examined in terms of the moist static energy (MSE) and moisture budgets. Two experiments are carried out using the NCAR Community Atmosphere Model, version 3.0 (CAM3.0): a “CTL” run and an “NSC” run that is the same as the CTL except with shallow convection disabled below 700 hPa between 20°S and 20°N. Although the major features in the mean state of outgoing longwave radiation, 850-hPa winds, and vertical structure of specific humidity are reasonably reproduced in both simulations, moisture and clouds are more confined to the planetary boundary layer in the NSC run. While the CTL run gives a better simulation of the MJO life cycle when compared with the reanalysis data, the NSC shows a substantially weaker MJO signal. Both the reanalysis data and simulations show a recharge–discharge mechanism in the MSE evolution that is dominated by the moisture anomalies. However, in the NSC the development of MSE and moisture anomalies is weaker and confined to a shallow layer at the developing phases, which may prevent further development of deep convection. By conducting the budget analysis on both the MSE and moisture, it is found that the major biases in the NSC run are largely attributed to the vertical and horizontal advection. Without shallow convection, the lack of gradual deepening of upward motion during the developing stage of MJO prevents the lower troposphere above the boundary layer from being preconditioned for deep convection.


Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 319
Author(s):  
Lijun Yu ◽  
Shuhui Wu ◽  
Zhanhong Ma

The characteristics of moist static energy (MSE) and its budget in a simulated tropical cyclone (TC) are examined in this study. Results demonstrate that MSE in a TC system is enhanced as the storm strengthens, primarily because of two mechanisms: upward transfer of surface heat fluxes and subsequent warming of the upper troposphere. An inspection of the interchangeable approximation between MSE and equivalent potential temperature (θe) suggests that although MSE is capable of capturing overall structures of θe, some important features will still be distorted, specifically the low-MSE pool outside the eyewall. In this low-MSE region, from the budget analysis, the discharge of MSE in the boundary layer may even surpass the recharge of MSE from the ocean. Unlike the volume-averaged MSE, the mass-weighted MSE in a fixed volume following the TC shows no apparent increase as the TC intensifies, because the atmosphere becomes continually thinner accompanying the warming of the storm. By calculating a mass-weighted volume MSE budget, the TC system is found to export MSE throughout its lifetime, since the radial outflow overwhelms the radial inflow. Moreover, the more intensified the TC is, the more export of MSE there tends to be. The input of MSE by surface heat fluxes is roughly balanced by the combined effects of radiation and lateral export, wherein a great majority of the imported MSE is reduced by radiation, while the export of MSE from the TC system to the environment accounts for only a small portion.


2016 ◽  
Vol 73 (2) ◽  
pp. 743-759 ◽  
Author(s):  
Yukari Sumi ◽  
Hirohiko Masunaga

Abstract A moist static energy (MSE) budget analysis is applied to quasi-2-day waves to examine the effects of thermodynamic processes on the wave propagation mechanism. The 2-day waves are defined as westward inertia–gravity (WIG) modes identified with filtered geostationary infrared measurements, and the thermodynamic parameters and MSE budget variables computed from reanalysis data are composited with respect to the WIG peaks. The composite horizontal and vertical MSE structures are overall as theoretically expected from WIG wave dynamics. A prominent horizontal MSE advection is found to exist, although the wave dynamics is mainly regulated by vertical advection. The vertical advection decreases MSE around the times of the convective peak, plausibly resulting from the first baroclinic mode associated with deep convection. Normalized gross moist stability (NGMS) is used to examine the thermodynamic processes involving the large-scale dynamics and convective heating. NGMS gradually decreases to zero before deep convection and reaches a maximum after the convection peak, where low (high) NGMS leads (lags) deep convection. The decrease in NGMS toward zero before the occurrence of active convection suggests an increasingly efficient conversion from convective heating to large-scale dynamics as the wave comes in, while the increase afterward signifies that this linkage swiftly dies out after the peak.


2013 ◽  
Vol 26 (14) ◽  
pp. 4981-4993 ◽  
Author(s):  
Xiaoqing Wu ◽  
Liping Deng

Abstract The moist static energy (MSE) anomalies and MSE budget associated with the Madden–Julian oscillation (MJO) simulated in the Iowa State University General Circulation Model (ISUGCM) over the Indian and Pacific Oceans are compared with observations. Different phase relationships between MJO 850-hPa zonal wind, precipitation, and surface latent heat flux are simulated over the Indian Ocean and western Pacific, which are greatly influenced by the convection closure, trigger conditions, and convective momentum transport (CMT). The moist static energy builds up from the lower troposphere 15–20 days before the peak of MJO precipitation, and reaches the maximum in the middle troposphere (500–600 hPa) near the peak of MJO precipitation. The gradual lower-tropospheric heating and moistening and the upward transport of moist static energy are important aspects of MJO events, which are documented in observational studies but poorly simulated in most GCMs. The trigger conditions for deep convection, obtained from the year-long cloud-resolving model (CRM) simulations, contribute to the striking difference between ISUGCM simulations with the original and modified convection schemes and play the major role in the improved MJO simulation in ISUGCM. Additionally, the budget analysis with the ISUGCM simulations shows the increase in MJO MSE is in phase with the horizontal advection of MSE over the western Pacific, while out of phase with the horizontal advection of MSE over the Indian Ocean. However, the NCEP analysis shows that the tendency of MJO MSE is in phase with the horizontal advection of MSE over both oceans.


2021 ◽  
Author(s):  
Hyunju Jung ◽  
Peter Knippertz ◽  
Corinna Hoose ◽  
Yvonne Ruckstuhl ◽  
Robert Redl ◽  
...  

<p>Recent studies found that the coupling of equatorial waves to convection is key to improving weather forecasts in the tropics on the synoptic to the subseasonal timescale but many models struggle to realistically represent this coupling. To study the underlying mechanisms of convectively coupled equatorial waves, we use aquaplanet simulations with the ICOsahedral Nonhydrostatic (ICON) model in a tropical channel configuration with a horizontal grid spacing of 13 km and with a prescribed zonally symmetric, latitudinally varying sea surface temperature. We compare simulations with parameterized and explicit deep/shallow convection. Using wave identification tools that are based on Fourier filtering in time and space and on projections of dynamical fields on theoretical wave patterns, we observe a predominance of equator-symmetric equatorial waves such as Kelvin waves and slow large-scale variability resembling the Madden-Julian Oscillation.</p><p>To diagnose interactions between the equatorial waves and convection, we use a moist static energy (MSE) framework. A budget analysis for column integrated MSE shows that spatial anomalies of the net shortwave and longwave radiation and the surface enthalpy flux increase the spatial variance of the column MSE, while advection dampens variability. For wave-convection coupling we employ a wave composite technique for the terms of the MSE budget. Results from this analysis will be presented at the conference. The same filtering tools and diagnostics are applied to a realistic ICON simulation with a 2.5 km horizontal grid spacing from the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND) project.</p>


2015 ◽  
Vol 28 (19) ◽  
pp. 7786-7808 ◽  
Author(s):  
Brandon O. Wolding ◽  
Eric D. Maloney

Abstract Processes controlling moisture variations associated with the MJO are investigated using budgets of moist static energy (MSE) and moisture. To first order, precipitation anomalies are maintained by anomalous large-scale vertical moisture advection, which can be understood through application of a weak temperature gradient balance framework to the MSE budget. Intraseasonal variations in longwave radiative cooling play a crucial role in destabilizing the MJO by enhancing intraseasonal variations in large-scale vertical moisture advection. This enhancement allows the effect of intraseasonal variations in large-scale vertical moisture advection to meet or exceed the effect of intraseasonal variations in net condensation, resulting in a positive feedback between the net effect of these processes and moisture anomalies. Intraseasonal variations in surface latent heat flux (SLHF) enhance this positive feedback, but appear to be insufficient to destabilize the MJO in the absence of radiative feedbacks. The effect an ensemble cloud population has on large-scale moisture is investigated using fields where only high-frequency variability has been removed. During the enhanced phase, approximately 85% of the moisture removed by net condensation is resupplied by the large-scale vertical moisture advection associated with apparent heating by microphysical processes and subgrid-scale vertical fluxes of dry static energy. This suggests that a relatively large increase in net condensation could be supported by a relatively small anomalous moisture source, even in the absence of radiative feedbacks. These results highlight the importance of process-oriented assessment of MJO-like variability within models, and suggest that a weak temperature gradient (WTG) balance framework may be used to identify destabilization mechanisms, thereby distinguishing between MJO-like variability of fundamentally different character.


2021 ◽  
Vol 34 (2) ◽  
pp. 839-853
Author(s):  
Feng Hu ◽  
Tim Li ◽  
Jianyun Gao ◽  
Lisheng Hao

AbstractTwo existing moisture mode theories of the MJO, one emphasizing boundary layer moisture asymmetry (MA) and the other emphasizing column-integrated moist static energy (MSE) tendency asymmetry (TA), were validated with the diagnosis of observational data during 1979–2012. A total of 2343 MJO days are selected. While all these days show a clear phase leading of the boundary layer moisture, 20% of these days do not show a positive column-integrated MSE tendency in front of MJO convection (non-TA). A further MSE budget analysis indicates that the difference between the non-TA composite and the TA composite lies in the zonal extent of anomalously vertical overturning circulation in front of the MJO convection. A background mean precipitation modulation mechanism is proposed to explain the distinctive circulation responses. Dependent on the MJO location, an anomalous Gill response to the heating is greatly modulated by the seasonal mean and ENSO induced precipitation fields. Despite the negative MSE tendency in front of MJO convection in the non-TA group, the system continues moving eastward due to the effect of the boundary layer moistening, which promotes a convectively unstable stratification ahead of MJO convection. The analysis result suggests that the first type of moisture mode theories, the moisture asymmetry mechanism, appears more robust, particularly over the eastern Maritime Continent and western Pacific.


2015 ◽  
Vol 28 (19) ◽  
pp. 7630-7640 ◽  
Author(s):  
Gen Li ◽  
Yan Du ◽  
Haiming Xu ◽  
Baohua Ren

Abstract An excessive cold tongue error in the equatorial Pacific has prevailed in several generations of climate models. However, the causes of this problem remain a mystery, partly owing to uncertainty and/or a lack of observational datasets. Based on the multimodel ensemble from phase 5 of the Coupled Model Intercomparison Project (CMIP5), this study introduces a novel intermodel approach to identify the bias source by going beyond comparison with observational datasets. Intermodel statistics show that the excessive cold tongue bias could be traced back to a too strong oceanic dynamic cooling linked to a too shallow thermocline along the equatorial Pacific. A heat budget analysis suggests that the excessive oceanic dynamic cooling is balanced by the surface latent heat flux (LHF) adjustment. This is consistent with a variety of oceanic and atmospheric observations but at odds with the popular objectively analyzed air–sea heat fluxes (OAFlux) products. Further analyses suggest an alarming overestimation of OAFlux net surface heat flux (Qnet) into the tropical Pacific, mainly ascribed to observational uncertainly in air specific humidity. Implications for intermodel statistics in assessing model processes, validating observational data, and regulating future climate projections are discussed.


2019 ◽  
Vol 32 (18) ◽  
pp. 6071-6095 ◽  
Author(s):  
Allison A. Wing ◽  
Suzana J. Camargo ◽  
Adam H. Sobel ◽  
Daehyun Kim ◽  
Yumin Moon ◽  
...  

Abstract Tropical cyclone intensification processes are explored in six high-resolution climate models. The analysis framework employs process-oriented diagnostics that focus on how convection, moisture, clouds, and related processes are coupled. These diagnostics include budgets of column moist static energy and the spatial variance of column moist static energy, where the column integral is performed between fixed pressure levels. The latter allows for the quantification of the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclone spinup, including surface flux feedbacks and cloud-radiative feedbacks. Tropical cyclones (TCs) are tracked in the climate model simulations and the analysis is applied along the individual tracks and composited over many TCs. Two methods of compositing are employed: a composite over all TC snapshots in a given intensity range, and a composite over all TC snapshots at the same stage in the TC life cycle (same time relative to the time of lifetime maximum intensity for each storm). The radiative feedback contributes to TC development in all models, especially in storms of weaker intensity or earlier stages of development. Notably, the surface flux feedback is stronger in models that simulate more intense TCs. This indicates that the representation of the interaction between spatially varying surface fluxes and the developing TC is responsible for at least part of the intermodel spread in TC simulation.


Sign in / Sign up

Export Citation Format

Share Document