Interannual Variability of the Basinwide Translation Speed of Tropical Cyclones in the Western North Pacific

2020 ◽  
Vol 33 (20) ◽  
pp. 8641-8650
Author(s):  
Chao Wang ◽  
Liguang Wu ◽  
Jun Lu ◽  
Qingyuan Liu ◽  
Haikun Zhao ◽  
...  

AbstractUnderstanding variations in tropical cyclone (TC) translation speed (TCS) is of great importance for islands and coastal regions since it is an important factor in determining TC-induced local damages. Investigating the long-term change in TCS was usually subject to substantial limitations in the quality of historical TC records, but here we investigated the interannual variability in TCS over the western North Pacific (WNP) Ocean by using reliable satellite TC records. It was found that both temporal changes in large-scale steering flow and TC track greatly contributed to interannual variability in the WNP TCS. In the peak season (July–September), TCS changes were closely related to temporal variations in large-scale steering flow, which was linked to the intensity of the western North Pacific subtropical high. However, for the late season (October–December), changes in TC track played a vital role in interannual variability in TCS while the impacts of temporal variations in large-scale steering were weak. The changes in TC track were mainly contributed by the El Niño–Southern Oscillation (ENSO)-induced zonal migrations in TC genesis locations, which make more or fewer TCs move to the subtropical WNP, thus leading to notable changes in the basinwide TCS because of the much greater large-scale steering in the subtropical WNP. The increased influence of TC track change on TCS in the late season was linked to the greater contrast between the subtropical and the tropical large-scale steering in the late season. These results have important implications for understanding current and future variations in TCS.

2018 ◽  
Vol 31 (5) ◽  
pp. 1771-1787 ◽  
Author(s):  
Jau-Ming Chen ◽  
Pei-Hua Tan ◽  
Liang Wu ◽  
Hui-Shan Chen ◽  
Jin-Shuen Liu ◽  
...  

This study examines the interannual variability of summer tropical cyclone (TC) rainfall (TCR) in the western North Pacific (WNP) depicted by the Climate Forecast System Reanalysis (CFSR). This interannual variability exhibits a maximum region near Taiwan (19°–28°N, 120°–128°E). Significantly increased TCR in this region is modulated by El Niño–Southern Oscillation (ENSO)-related large-scale processes. They feature elongated sea surface temperature warming in the tropical eastern Pacific and a southeastward-intensified monsoon trough. Increased TC movements are facilitated by interannual southerly/southeasterly flows in the northeastern periphery of the intensified monsoon trough to move from the tropical WNP toward the region near Taiwan, resulting in increased TCR. The coherent dynamic relations between interannual variability of summer TCR and large-scale environmental processes justify CFSR as being able to reasonably depict interannual characteristics of summer TCR in the WNP. For intraseasonal oscillation (ISO) modulations, TCs tend to cluster around the center of a 10–24-day cyclonic anomaly and follow its northwestward propagation from the tropical WNP toward the region near Taiwan. The above TC movements are subject to favorable background conditions provided by a northwest–southeasterly extending 30–60-day cyclonic anomaly. Summer TCR tends to increase (decrease) during El Niño (La Niña) years and strong (weak) ISO years. By comparing composite TCR anomalies and correlations with TCR variability, it is found that ENSO is more influential than ISO in modulating the interannual variability of summer TCR in the WNP.


2019 ◽  
Vol 32 (24) ◽  
pp. 8677-8686 ◽  
Author(s):  
Xingyan Zhou ◽  
Riyu Lu

Abstract This study focused on the interannual variability of tropical cyclone (TC) activity over the western North Pacific in autumn. The results show that the frequencies of TC landfalls in the southern and northern coastal regions of East Asia are roughly independent, implying that they are affected by different factors and should be studied separately. Further analysis indicates that the frequency of TC landfall in the southern region is closely related to El Niño–Southern Oscillation, which affects both the upper- and lower-tropospheric circulation over the western North Pacific and East Asia and induces changes in the steering flow. By contrast, the frequency of TC landfall over the northern region has a close connection with a teleconnection pattern in the upper troposphere over the Eurasian continent, which seems to be triggered by an anomalous Rossby wave source over the North Atlantic. This teleconnection pattern leads to anomalous meridional winds over the western North Pacific and East Asia and induces significant changes in the steering flow.


2020 ◽  
Vol 54 (3-4) ◽  
pp. 2237-2248 ◽  
Author(s):  
Qiong Wu ◽  
Xiaochun Wang ◽  
Li Tao

AbstractIn this study, we analyzed the impacts of Western North Pacific Subtropical High (WNPSH) on tropical cyclone (TC) activity on both interannual and interdecadal timescales. Based on a clustering analysis method, we grouped TCs in the Western North Pacific into three clusters according to their track patterns. We mainly focus on Cluster 1 (C1) TCs in this work, which is characterized by forming north of 15° N and moving northward. On interannual timescale, the number of C1 TCs is influenced by the intensity variability of the WNPSH, which is represented by the first Empirical Orthogonal Function (EOF) of 850 hPa geopotential height of the region. The WNPSH itself is modulated by the El Niño–Southern Oscillation at its peak phase in the previous winter, as well as Indian and Atlantic Ocean sea surface temperature anomalies in following seasons. The second EOF mode shows the interdecadal change of WNPSH intensity. The interdecadal variability of WNPSH intensity related to the Pacific climate regime shift could cause anomalies of the steering flow, and lead to the longitudinal shift of C1 TC track. Negative phases of interdecadal Pacific oscillation are associated with easterly anomaly of steering flow, westward shift of C1 TC track, and large TC impact on the East Asia coastal area.


2019 ◽  
Vol 32 (11) ◽  
pp. 3357-3372 ◽  
Author(s):  
Ruifen Zhan ◽  
Yuqing Wang ◽  
Jiuwei Zhao

Abstract This study attempts to evaluate quantitatively the contributions of sea surface temperature (SST) anomalies in the Indo-Pacific Ocean to the interannual variability of tropical cyclone (TC) genesis frequency (TCGF) over the western North Pacific (WNP). Three SST factors in the Indo-Pacific Ocean are found to play key roles in modulating the interannual variability of WNP TCGF. They are summer SST anomaly in the east Indian Ocean (EIO), the summer El Niño–Southern Oscillation Modoki index (EMI), and the spring SST gradient (SSTG) between the southwestern Pacific and the western Pacific warm pool. Results show that the three factors together can explain 72% of the total variance of WNP TCGF in the typhoon season for the period 1980–2015. Among them, the spring SSTG and the summer EIO contribute predominantly to the interannual variability of TCGF, followed by the summer EMI, with respective contributions being 39%, 38%, and 23%. Further analysis shows that the summer EMI was affected significantly by the spring SSTG and thus had a relatively lower contribution to the TCGF than the spring SSTG. In addition, a statistical model is constructed to predict the WNP TCGF in the typhoon season by a combination of the May EIO and the spring SSTG. The new model can reproduce well the observed WNP TCGF and shows an overall better skill than the ECMWF Seasonal Forecasting System 5 (SEAS5) hindcasts. This statistical model provides a good tool for seasonal prediction of WNP TCGF.


2015 ◽  
Vol 28 (5) ◽  
pp. 1806-1823 ◽  
Author(s):  
Angela J. Colbert ◽  
Brian J. Soden ◽  
Ben P. Kirtman

Abstract The impact of natural and anthropogenic climate change on tropical cyclone (TC) tracks in the western North Pacific (WNP) is examined using a beta and advection model (BAM) to isolate the influence of changes in the large-scale steering flow from changes in genesis location. The BAM captures many of the observed changes in TC tracks due to El Niño–Southern Oscillation (ENSO), while little change is noted for the Pacific decadal oscillation and all-India monsoon rainfall in either observations or BAM simulations. Analysis with the BAM suggests that the observed shifts in the average track between the phases of ENSO are primarily due to changes in the large-scale steering flow, with changes in genesis location playing a secondary role. Potential changes in TC tracks over the WNP due to anthropogenic climate change are also assessed. Ensemble mean projections are downscaled from 17 CMIP3 models and 26 CMIP5 models. Statistically significant decreases [~(4%–6%)] in westward moving TCs and increases [~(5%–7%)] in recurving ocean TCs are found. These correspond to projected decreases of 3–5 TCs per decade over the Philippines and increases of 1–3 TCs per decade over the central WNP. The projected changes are primarily caused by a reduction in the easterlies. This slows the storm movement, allowing more time for the beta drift to carry the storm northward and recurve. A previous study found similar results in the North Atlantic. Taken together, these results suggest that a weakening of the mean atmospheric circulation in response to anthropogenic warming will lead to fewer landfalling storms over the North Atlantic and WNP.


2016 ◽  
Vol 29 (18) ◽  
pp. 6401-6423 ◽  
Author(s):  
Rongqing Han ◽  
Hui Wang ◽  
Zeng-Zhen Hu ◽  
Arun Kumar ◽  
Weijing Li ◽  
...  

Abstract An assessment of simulations of the interannual variability of tropical cyclones (TCs) over the western North Pacific (WNP) and its association with El Niño–Southern Oscillation (ENSO), as well as a subsequent diagnosis for possible causes of model biases generated from simulated large-scale climate conditions, are documented in the paper. The model experiments are carried out by the Hurricane Work Group under the U.S. Climate Variability and Predictability Research Program (CLIVAR) using five global climate models (GCMs) with a total of 16 ensemble members forced by the observed sea surface temperature and spanning the 28-yr period from 1982 to 2009. The results show GISS and GFDL model ensemble means best simulate the interannual variability of TCs, and the multimodel ensemble mean (MME) follows. Also, the MME has the closest climate mean annual number of WNP TCs and the smallest root-mean-square error to the observation. Most GCMs can simulate the interannual variability of WNP TCs well, with stronger TC activities during two types of El Niño—namely, eastern Pacific (EP) and central Pacific (CP) El Niño—and weaker activity during La Niña. However, none of the models capture the differences in TC activity between EP and CP El Niño as are shown in observations. The inability of models to distinguish the differences in TC activities between the two types of El Niño events may be due to the bias of the models in response to the shift of tropical heating associated with CP El Niño.


2005 ◽  
Vol 62 (9) ◽  
pp. 3396-3407 ◽  
Author(s):  
Adam H. Sobel ◽  
Suzana J. Camargo

Abstract The authors investigate the influence of western North Pacific (WNP) tropical cyclones (TCs) on their large-scale environment by lag regressing various large-scale climate variables [atmospheric temperature, winds, relative vorticity, outgoing longwave radiation (OLR), column water vapor, and sea surface temperature (SST)] on an index of TC activity [accumulated cyclone energy (ACE)] on a weekly time scale. At all leads and lags out to several months, persistent, slowly evolving signals indicative of the El Niño–Southern Oscillation (ENSO) phenomenon are seen in all the variables, reflecting the known seasonal relationship of TCs in the WNP to ENSO. Superimposed on this are more rapidly evolving signals, at leads and lags of one or two weeks, directly associated with the TCs themselves. These include anomalies of positive low-level vorticity, negative OLR, and high column water vapor associated with anomalously positive ACE, found in the region where TCs most commonly form and develop. In the same region, lagging ACE by a week or two and so presumably reflecting the influence of TCs on the local environment, signals are found that might be expected to negatively influence the environment for later cyclogenesis. These signals include an SST reduction in the primary region of TC activity, and a reduction in column water vapor and increase in OLR that may or may not be a result of the SST reduction. On the same short time scale, an increase in equatorial SST near and east of the date line is seen, presumably associated with equatorial surface westerly anomalies that are also found. This, combined with the correlation between ACE and ENSO indices on the seasonal time scale, suggests the possibility that TCs may play an active role in ENSO dynamics.


Atmósfera ◽  
2015 ◽  
Vol 27 (4) ◽  
pp. 353-365
Author(s):  
HAIKUN ZHAO ◽  
GRACIELA B. RAGA

This study attempts to understand why the frequency of tropical cyclones (TC) over the western North Pacific (WNP) was a record low during the 2010 season, by analyzing the effect of several large-scale factors. The genesis potential index (GPI) can represent, to some extent, the spatial distribution of formation in 2010. However, the GPI does not explain the extremely low TC frequency. No robust relationship between the TCnumber and El Niño Southern Oscillation (ENSO) was found. A comparison of the extreme inactive TC year 2010 and extreme active year 1994 was performed, based on the box difference index that can measure the quantitative difference of large-scale environmental factors. Dynamic factors were found to be important in differentiating TC formation over the WNP basin between 2010 and 1994. The remarkable difference of monsoon flows in the WNP basin between these two years may be the cause of the difference in TC formation. The unfavorable conditions for TC genesis in 2010 may have also been due to other large scale factors such as: (1) weak activity of the Madden-Julian Oscillation during the peak season; (2) warming of the sea surface temperature in the tropical Indian Ocean during the peak season, causing the development of an anticyclone over the WNP basin and associated with the westward motion of the monsoon trough, and(3) the phase change of the Pacific Decadal Oscillation (more negative) and the two strong La Niña eventsthat have evolved since 2006.


2015 ◽  
Vol 143 (5) ◽  
pp. 1749-1761 ◽  
Author(s):  
Wook Jang ◽  
Hye-Yeong Chun

Abstract The statistical and dynamical characteristics of binary tropical cyclones (TCs) observed in the western North Pacific (WNP) for 62 years (1951–2012) are investigated by using best track and reanalysis data. A total of 98 binary TCs occurred with an annual average of 1.58. The occurrence frequency of binary TCs shows significant year-to-year variations and there are two peaks in the mid-1960s and early 1990s. Three-fourths (76.3%) of the binary TCs occurred between July and September, which is consistent with the high activity season of TCs in general. A relatively higher track density for binary TCs is present to the east of the maximum track density for total TCs. This result is likely due to the differences in the locations of genesis and environmental steering flow between binary and total TCs. The poleward steering flow, weaker vertical wind shear, and warmer sea surface temperature are pronounced for binary TCs, and these result in a longer lifetime of TCs, which can increase the chances that they would be detected as binary TCs. By applying the clustering analysis technique, six representative trajectories of the binary TCs are obtained. The transitional speed and recurving location are significantly different with respect to the clustered types. The trajectories of each type are strongly related to the temporal variations in the environmental steering flow and the location of the North Pacific high.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1082
Author(s):  
Min-Seok Kim ◽  
Peng Zhang ◽  
Sung-Ho Woo ◽  
Youngdae Koh ◽  
Hans W. Linderholm ◽  
...  

Tree-ring width (TRW) chronologies have successfully been used as climate proxies to infer climate variabilities over the past hundreds to thousands of years worldwide beyond observational records. However, these data are scarce over parts of subtropical East Asia, and especially over the Korean Peninsula. In this pilot study, Korean red pine (Pinus densiflora Siebold and Zucc.) TRW chronologies from Mt. Mudeung and Mt. Wolchul, South Korea, were developed, and their local- to large-scale climatic responses were investigated. Mt. Mudeung TRW had a positive association with local temperature in the preceding December and April. Mt. Wolchul TRW had a positive association with local temperature in the preceding December and most of the early summer to autumn months, and with local precipitation in February and October. On a large scale, both TRWs retained meaningful temperature and monsoon precipitation signals over East Asia and sea surface temperature signals over the Western North Pacific. The results suggest that the subtropical trees from South Korea can be used to infer past long-term climate variability at both local and large scales over East Asia and the Western North Pacific, such as the East Asian summer monsoon, the Kuroshio Current, the Western North Pacific Subtropical High, and El Niño–Southern Oscillation.


Sign in / Sign up

Export Citation Format

Share Document