scholarly journals Variable Nordic Seas inflow linked to shifts in North Atlantic circulation

2021 ◽  
pp. 1-50
Author(s):  
Helene Asbjørnsen ◽  
Helen L. Johnson ◽  
Marius Årthun

AbstractThe inflow across the Iceland-Scotland Ridge determines the amount of heat supplied to the Nordic Seas from the subpolar North Atlantic (SPNA). Consequently, variable inflow properties and volume transport at the ridge influence marine ecosystems and sea ice extent further north. Here, we identify the upstream pathways of the Nordic Seas inflow, and assess the mechanisms responsible for interannual inflow variability. Using an eddy-permitting ocean model hindcast and a Lagrangian analysis tool, numerical particles are released at the ridge during 1986-2015 and tracked backward in time. We find an inflow that is well-mixed in terms of its properties, where 64% comes from the subtropics and 26% has a subpolar or Arctic origin. The local instantaneous response to the NAO is important for the overall transport of both subtropical and Arctic-origin waters at the ridge. In the years before reaching the ridge, the subtropical particles are influenced by atmospheric circulation anomalies in the gyre boundary region and over the SPNA, forcing shifts in the North Atlantic Current (NAC) and the subpolar front. An equatorward shifted NAC and westward shifted subpolar front correspond to a warmer, more saline inflow. Atmospheric circulation anomalies over the SPNA also affect the amount of Arctic-origin water re-routed from the Labrador Current toward the Nordic Seas. A high transport of Arctic-origin water is associated with a colder, fresher inflow across the Iceland-Scotland Ridge. The results thus demonstrate the importance of gyre dynamics and wind forcing in affecting the Nordic Seas inflow properties and volume transport.

2021 ◽  
Author(s):  
Helene Asbjørnsen ◽  
Helen Johnson ◽  
Marius Årthun

<p>The inflow across the Iceland-Scotland Ridge determines the amount of heat supplied to the Nordic Seas from the subpolar North Atlantic (SPNA). Variability in inflow properties and volume transport at the ridge influence marine ecosystems and sea ice extent further north. The predictability of such downstream impacts depends on how variability at the ridge relate to large-scale ocean circulation changes in the North Atlantic. Here, we identify the upstream pathways of the Nordic Seas inflow, and assess the mechanisms responsible for interannual inflow variability. Using an eddy-resolving ocean model hindcast and a Lagrangian analysis tool, numerical particles are released at the ridge during 1986-2015 and tracked backward in time. Overall, 64% of the mean inflow volume transport has a subtropical origin and 26% has a subpolar or Arctic origin. The local instantaneous response to the NAO is important for the overall transport of both subtropical and Arctic-origin waters at the ridge. In the years before reaching the ridge, the subtropical particles are influenced by atmospheric circulation anomalies in the gyre boundary region and over the SPNA, forcing shifts in the North Atlantic Current (NAC) and the subpolar front. An equatorward shifted NAC and westward shifted subpolar front correspond to a warmer, more saline inflow. Wind stress curl anomalies over the SPNA also affect the amount of Arctic-origin water re-routed from the Labrador Current toward the Nordic Seas. A high transport of Arctic-origin water is associated with a colder, fresher inflow across the Iceland-Scotland Ridge. The results thus demonstrate the importance of gyre dynamics and wind forcing in affecting the Nordic Seas inflow properties and volume transport.</p>


2010 ◽  
Vol 23 (14) ◽  
pp. 3835-3854 ◽  
Author(s):  
Xia Zhao ◽  
Jianping Li

Abstract The spatiotemporal characteristics of the winter-to-winter recurrence (WWR) of sea surface temperature anomalies (SSTA) in the Northern Hemisphere (NH) are comprehensively studied through lag correlation analysis. On this basis the relationships between the SSTA WWR and the WWR of the atmospheric circulation anomalies, El Niño–Southern Oscillation (ENSO), and SSTA interdecadal variability are also investigated. Results show that the SSTA WWR occurs over most parts of the North Pacific and Atlantic Oceans, but the spatiotemporal distributions of the SSTA WWR are distinctly different in these two oceans. Analyses indicate that the spatiotemporal distribution of the SSTA WWR in the North Atlantic Ocean is consistent with the spatial distribution of the seasonal cycle of its mixed layer depth (MLD), whereas that in the North Pacific Ocean, particularly the recurrence timing, cannot be fully explained by the change in the MLD between winter and summer in some regions. In addition, the atmospheric circulation anomalies also exhibit the WWR at the mid–high latitude of the NH, which is mainly located in eastern Asia, the central North Pacific, and the North Atlantic. The sea level pressure anomalies (SLPA) in the central North Pacific are essential for the occurrence of the SSTA WWR in this region. Moreover, the strongest positive correlation occurs when the SLPA lead SSTA in the central North Pacific by 1 month, which suggests that the atmospheric forcing on the ocean may play a dominant role in this region. Therefore, the “reemergence mechanism” is not the only process influencing the SSTA WWR, and the WWR of the atmospheric circulation anomalies may be one of the causes of the SSTA WWR in the central North Pacific. Finally, the occurrence of the SSTA WWR in the NH is closely related to SSTA interdecadal variability in the NH, but it is linearly independent of ENSO.


2016 ◽  
Vol 29 (3) ◽  
pp. 1109-1125 ◽  
Author(s):  
Shangfeng Chen ◽  
Renguang Wu ◽  
Yong Liu

Abstract This study investigates interannual variations of surface air temperature (SAT) over mid- and high latitudes of Eurasia during boreal spring and their association with snow, atmospheric circulation, and sea surface temperature (SST) changes. The leading mode of spring SAT variations is featured by same-sign anomalies over most regions. The second mode features a tripole anomaly pattern with anomalies over the central part opposite to those over the eastern and western parts of Eurasia. A diagnosis of surface heat flux anomalies suggests that snow change contributes partly to SAT anomalies in several regions mainly by modulating surface shortwave radiation but cannot explain SAT changes in other regions. Atmospheric circulation anomalies play an important role in spring SAT variability via wind-induced heat advection and cloud-induced surface radiation changes. Positive SAT anomalies are associated with anomalous westerly winds from the North Atlantic Ocean or with anomalous anticyclone and southerly winds. Negative SAT anomalies occur in regions of anomalous cyclone and northerly winds. Atmospheric circulation anomalies associated with the first mode have a close relationship to spring Arctic Oscillation (AO), indicating the impact of the AO on continental-scale spring SAT variations over the mid- and high latitudes of Eurasia. The atmospheric circulation anomalies associated with the second mode feature a wave pattern over the North Atlantic and Eurasia. Such a wave pattern is related to a tripole SST anomaly pattern in the North Atlantic Ocean, signifying the contribution of the North Atlantic Ocean state to the formation of a tripole SAT anomaly pattern over the mid- and high latitudes of Eurasia.


2018 ◽  
Vol 31 (14) ◽  
pp. 5707-5729 ◽  
Author(s):  
Weichen Tao ◽  
Gang Huang ◽  
Renguang Wu ◽  
Kaiming Hu ◽  
Pengfei Wang ◽  
...  

Abstract The present study documents the biases of summertime northwest Pacific (NWP) atmospheric circulation anomalies during the decaying phase of ENSO and investigates their plausible reasons in 32 models from phase 5 of the Coupled Model Intercomparison Project. Based on an intermodel empirical orthogonal function (EOF) analysis of El Niño–Southern Oscillation (ENSO)-related 850-hPa wind anomalies, the dominant modes of biases are extracted. The first EOF mode, explaining 21.3% of total intermodel variance, is characterized by a cyclone over the NWP, indicating a weaker NWP anticyclone. The cyclone appears to be a Rossby wave response to unrealistic equatorial western Pacific (WP) sea surface temperature (SST) anomalies related to excessive equatorial Pacific cold tongue in the models. On one hand, the cold SST biases increase the mean zonal SST gradient, which further intensifies warm zonal advection, favoring the development and persistence of equatorial WP SST anomalies. On the other hand, they reduce the anomalous convection caused by ENSO-related warming, and the resultant increase in downward shortwave radiation contributes to the SST anomalies there. The second EOF mode, explaining 18.6% of total intermodel variance, features an anticyclone over the NWP with location shifted northward. The related SST anomalies in the Indo-Pacific sector show a tripole structure, with warming in the tropical Indian Ocean and equatorial central and eastern Pacific and cooling in the NWP. The Indo-Pacific SST anomalies are highly controlled by ENSO amplitude, which is determined by the intensity of subtropical cells via the adjustment of meridional and vertical advection in the models.


2013 ◽  
Vol 26 (15) ◽  
pp. 5523-5536 ◽  
Author(s):  
Bingyi Wu ◽  
Renhe Zhang ◽  
Rosanne D'Arrigo ◽  
Jingzhi Su

Abstract Using NCEP–NCAR reanalysis and Japanese 25-yr Reanalysis (JRA-25) data, this paper investigates the association between winter sea ice concentration (SIC) in Baffin Bay southward to the eastern coast of Newfoundland, and the ensuing summer atmospheric circulation over the mid- to high latitudes of Eurasia. It is found that winter SIC anomalies are significantly correlated with the ensuing summer 500-hPa height anomalies that dynamically correspond to the Eurasian pattern of 850-hPa wind variability and significantly influence summer rainfall variability over northern Eurasia. Spring atmospheric circulation anomalies south of Newfoundland, associated with persistent winter–spring SIC and a horseshoe-like pattern of sea surface temperature (SST) anomalies in the North Atlantic, act as a bridge linking winter SIC and the ensuing summer atmospheric circulation anomalies over northern Eurasia. Indeed, this study only reveals the association based on observations and simple simulation experiments with SIC forcing. The more precise mechanism for this linkage needs to be addressed in future work using numerical simulations with SIC and SST as the external forcings. The results herein have the following implication: Winter SIC west of Greenland is a possible precursor for summer atmospheric circulation and rainfall anomalies over northern Eurasia.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1265
Author(s):  
Hangcheng Ge ◽  
Gang Zeng ◽  
Vedaste Iyakaremye ◽  
Xiaoye Yang ◽  
Zongming Wang

Many previous studies have reported that atmospheric circulation anomalies are generally the direct cause of extreme high-temperature (EHT). However, the atmospheric circulation anomalies of EHT days with different humidity and the differences between them are less often discussed, while humidity plays an important role in how people feel in a high-temperature environment. Therefore, this study uses 1961–2016 CN05.1 daily observational data and NCEP/NCAR reanalysis data to classify summer EHT days in China into dry and wet. Furthermore, we investigate the atmospheric circulation anomalies associated with the dry and wet EHT days in the middle and lower reaches of the Yellow River (MLRYR). The results reveal that dry EHT days are likely to be caused by adiabatic heating from anomalous subsidence, while wet EHT days are more likely caused by the low-latitude water vapor and heat anomalies brought by the Western Pacific Subtropical High (WPSH). This may be due to a remarkable westward/southward/narrowed extension of the Continental High (CH)/WPSH/South Asian High (SAH) accompanied by an occurrence of dry EHT day. The opposite pattern is observed for wet EHT days. Moreover, a wave train like the Silk Road pattern from the midlatitudes could affect the dry EHT days, while wet EHT days are more likely to be affected by a wave train from high latitudes. Knowing the specific characteristics of dry and wet EHT days and their associated atmospheric circulations could offer new insights into disaster risk prevention and reduction.


Sign in / Sign up

Export Citation Format

Share Document