Mechanisms of Rainfall Biases in two CORDEX-CORE Regional Climate Models at rainfall peaks over Central Equatorial Africa

2021 ◽  
pp. 1-69
Author(s):  
Alain T. Tamoffo ◽  
Leonard K. Amekudzi ◽  
Torsten Weber ◽  
Derbetini A. Vondou ◽  
Edmund I. Yamba ◽  
...  

Abstract Two regional climate models (RCMs) participating in the CORDEX-Coordinated Output for Regional Evaluations (CORDEX-CORE) project feature a dipole-type rainfall bias during March-May (MAM) and September-November (SON) over Central Equatorial Africa (CEA), consisting in positive bias in West Central Equatorial Africa (WCEA) and negative bias in East Central Equatorial Africa (ECEA). One is the REgional MOdel version 2015 (REMO2015), and the other is the fourth version of the Regional Climate Model (RegCM4-v7). RCMs are nested in three Earth System Models (ESMs) from the Coupled Model Intercomparison Project phase 5 (CMIP5), and in the reanalysis ERA-Interim, at ~25 Km spacing-grid resolution. This study highlights misrepresented underlying physical processes associated with these rainfall biases through a process-based evaluation. Both RCMs produce a weaker Congo basin cell, associated with a weaker land-ocean zonal surface pressure gradient. Consequently, less water vapour enters the region, and little amount is transported from WCEA to ECEA, resulting in higher moisture availability in the west than in the east. This leads to an unevenly distributed moisture across the region, favouring a stronger atmospheric instability in WCEA where the moist static energy (MSE) anomalously increases through an enhanced latent static energy (LSE). Moisture arrives at a slower pace in ECEA, associated with the weak cell's strength. The intensity of ascent motions in response to the orographic constraint is weak to destabilise atmospheric stability in the lower layers, necessary for initiating deep convection. Therefore, the convection is shallow in ECEA related to underestimating the MSE due to the reduced LSE.

Author(s):  
Weijia Qian ◽  
Howard H. Chang

Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile mapping (QM) is a technique that has gained popularity in climate science because of its focus on bias-correcting the entire exposure distribution. Even though improved bias-correction at the extreme tails of exposure may be particularly important for estimating health burdens, the application of QM in health impact projection has been limited. In this paper we describe and apply five QM methods to estimate excess emergency department (ED) visits due to projected changes in warm-season minimum temperature in Atlanta, USA. We utilized temperature projections from an ensemble of regional climate models in the North American-Coordinated Regional Climate Downscaling Experiment (NA-CORDEX). Across QM methods, we estimated consistent increase in ED visits across climate model ensemble under RCP 8.5 during the period 2050 to 2099. We found that QM methods can significantly reduce between-model variation in health impact projections (50–70% decreases in between-model standard deviation). Particularly, the quantile delta mapping approach had the largest reduction and is recommended also because of its ability to preserve model-projected absolute temporal changes in quantiles.


2021 ◽  
Vol 11 (5) ◽  
pp. 2403
Author(s):  
Daniel Ziche ◽  
Winfried Riek ◽  
Alexander Russ ◽  
Rainer Hentschel ◽  
Jan Martin

To develop measures to reduce the vulnerability of forests to drought, it is necessary to estimate specific water balances in sites and to estimate their development with climate change scenarios. We quantified the water balance of seven forest monitoring sites in northeast Germany for the historical time period 1961–2019, and for climate change projections for the time period 2010–2100. We used the LWF-BROOK90 hydrological model forced with historical data, and bias-adjusted data from two models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) downscaled with regional climate models under the representative concentration pathways (RCPs) 2.6 and 8.5. Site-specific monitoring data were used to give a realistic model input and to calibrate and validate the model. The results revealed significant trends (evapotranspiration, dry days (actual/potential transpiration < 0.7)) toward drier conditions within the historical time period and demonstrate the extreme conditions of 2018 and 2019. Under RCP8.5, both models simulate an increase in evapotranspiration and dry days. The response of precipitation to climate change is ambiguous, with increasing precipitation with one model. Under RCP2.6, both models do not reveal an increase in drought in 2071–2100 compared to 1990–2019. The current temperature increase fits RCP8.5 simulations, suggesting that this scenario is more realistic than RCP2.6.


2021 ◽  
Author(s):  
Jeremy Carter ◽  
Amber Leeson ◽  
Andrew Orr ◽  
Christoph Kittel ◽  
Melchior van Wessem

&lt;p&gt;Understanding the surface climatology of the Antarctic ice sheet is essential if we are to adequately predict its response to future climate change. This includes both primary impacts such as increased ice melting and secondary impacts such as ice shelf collapse events. Given its size, and inhospitable environment, weather stations on Antarctica are sparse. Thus, we rely on regional climate models to 1) develop our understanding of how the climate of Antarctica varies in both time and space and 2) provide data to use as context for remote sensing studies and forcing for dynamical process models. Given that there are a number of different regional climate models available that explicitly simulate Antarctic climate, understanding inter- and intra model variability is important.&lt;/p&gt;&lt;p&gt;Here, inter- and intra-model variability in Antarctic-wide regional climate model output is assessed for: snowfall; rainfall; snowmelt and near-surface air temperature within a cloud-based virtual lab framework. State-of-the-art regional climate model runs from the Antarctic-CORDEX project using the RACMO, MAR and MetUM models are used, together with the ERA5 and ERA-Interim reanalyses products. Multiple simulations using the same model and domain boundary but run at either different spatial resolutions or with different driving data are used. Traditional analysis techniques are exploited and the question of potential added value from more modern and involved methods such as the use of Gaussian Processes is investigated. The advantages of using a virtual lab in a cloud based environment for increasing transparency and reproducibility, are demonstrated, with a view to ultimately make the code and methods used widely available for other research groups.&lt;/p&gt;


Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 262 ◽  
Author(s):  
Coraline Wyard ◽  
Sébastien Doutreloup ◽  
Alexandre Belleflamme ◽  
Martin Wild ◽  
Xavier Fettweis

The use of regional climate models (RCMs) can partly reduce the biases in global radiative flux (Eg↓) that are found in reanalysis products and global models, as they allow for a finer spatial resolution and a finer parametrisation of surface and atmospheric processes. In this study, we assess the ability of the MAR («Modèle Atmosphérique Régional») RCM to reproduce observed changes in Eg↓, and we investigate the added value of MAR with respect to reanalyses. Simulations were performed at a horizontal resolution of 5 km for the period 1959–2010 by forcing MAR with different reanalysis products: ERA40/ERA-interim, NCEP/NCAR-v1, ERA-20C, and 20CRV2C. Measurements of Eg↓ from the Global Energy Balance Archive (GEBA) and from the Royal Meteorological Institute of Belgium (RMIB), as well as cloud cover observations from Belgocontrol and RMIB, were used for the evaluation of the MAR model and the forcing reanalyses. Results show that MAR enables largely reducing the mean biases that are present in the reanalyses. The trend analysis shows that only MAR forced by ERA40/ERA-interim shows historical trends, which is probably because the ERA40/ERA-interim has a better horizontal resolution and assimilates more observations than the other reanalyses that are used in this study. The results suggest that the solar brightening observed since the 1980s in Belgium has mainly been due to decreasing cloud cover.


2021 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

Abstract Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statistical downscaling methods and Regional Climate Models (RCMs). The aim of this tool is to enlarge the size of high-resolution RCM simulation ensembles at low cost.We build a statistical RCM-emulator by estimating the downscaling function included in the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of interest over the RCM domain in present and future climate. Furthermore, the emulator relies on a neural network architecture, which grants computational efficiency. The RCM-emulator developed in this study is trained to produce daily maps of the near-surface temperature at the RCM resolution (12km). The emulator demonstrates an excellent ability to reproduce the complex spatial structure and daily variability simulated by the RCM and in particular the way the RCM refines locally the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there is a huge computational benefit in running the emulator rather than the RCM, since training the emulator takes about 2 hours on GPU, and the prediction is nearly instantaneous. However, further work is needed to improve the way the RCM-emulator reproduces some of the temperature extremes, the intensity of climate change, and to extend the proposed methodology to different regions, GCMs, RCMs, and variables of interest.


2019 ◽  
Author(s):  
Muhammad Shafqat Mehboob ◽  
Yeonjoo Kim ◽  
Jaehyeong Lee ◽  
Myoung-Jin Um ◽  
Amir Erfanian ◽  
...  

Abstract. This study investigates the projected effect of vegetation feedback on drought conditions in West Africa using a regional climate model coupled to the National Center for Atmospheric Research Community Land Model, the carbon-nitrogen (CN) module, and the dynamic vegetation (DV) module (RegCM-CLM-CN-DV). The role of vegetation feedback is examined based on simulations with and without the DV module. Simulations from four different global climate models are used as lateral boundary conditions (LBCs) for historical and future periods (i.e., historical: 1981–2000; future: 2081–2100). With utilizing the Standardized Precipitation Evapotranspiration Index (SPEI), we quantify the duration, frequency, and severity of droughts over the focal regions of the Sahel, the Gulf of Guinea, and the Congo Basin. With the vegetation dynamics being considered, future droughts become more prolonged and enhanced over the Sahel, whereas for the Guinea Gulf and Congo Basin, the trend is opposite. Additionally, we show that simulated annual leaf greenness (i.e., the Leaf Area Index) well-correlates with annual minimum SPEI, particularly over the Sahel, which is a transition zone, where the feedback between land-atmosphere is relatively strong. Furthermore, we note that our findings based on the ensemble mean are varying, but consistent among three different LBCs except for one LBC. Our results signify the importance of vegetation dynamics in predicting future droughts in West Africa, where the biosphere and atmosphere interactions play an important role in the regional climate setup.


2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

&lt;p&gt;Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2&amp;#176;C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.&lt;/p&gt;


2021 ◽  
Author(s):  
David J. Peres ◽  
Alfonso Senatore ◽  
Paola Nanni ◽  
Antonino Cancelliere ◽  
Giuseppe Mendicino ◽  
...  

&lt;p&gt;Regional climate models (RCMs) are commonly used for assessing, at proper spatial resolutions, future impacts of climate change on hydrological events. In this study, we propose a statistical methodological framework to assess the quality of the EURO-CORDEX RCMs concerning their ability to simulate historic observed climate (temperature and precipitation). We specifically focus on the models&amp;#8217; performance in reproducing drought characteristics (duration, accumulated deficit, intensity, and return period) determined by the theory of runs at seasonal and annual timescales, by comparison with high-density and high-quality ground-based observational datasets. In particular, the proposed methodology is applied to the Sicily and Calabria regions (Southern Italy), where long historical precipitation and temperature series were recorded by the ground-based monitoring networks operated by the former Regional Hydrographic Offices. The density of the measurements is considerably greater than observational gridded datasets available at the European level, such as E-OBS or CRU-TS. Results show that among the models based on the combination of the HadGEM2 global circulation model (GCM) with the CLM-Community RCMs are the most skillful in reproducing precipitation and temperature variability as well as drought characteristics. Nevertheless, the ranking of the models may slightly change depending on the specific variable analysed, as well as the temporal and spatial scale of interest. From this point of view, the proposed methodology highlights the skills and weaknesses of the different configurations, aiding on the selection of the most suitable climate model for assessing climate change impacts on drought processes and the underlying variables.&lt;/p&gt;


2021 ◽  
pp. 1-56

This paper describes the downscaling of an ensemble of twelve GCMs using the WRF model at 12-km grid spacing over the period 1970-2099, examining the mesoscale impacts of global warming as well as the uncertainties in its mesoscale expression. The RCP 8.5 emissions scenario was used to drive both global and regional climate models. The regional climate modeling system reduced bias and improved realism for a historical period, in contrast to substantial errors for the GCM simulations driven by lack of resolution. The regional climate ensemble indicated several mesoscale responses to global warming that were not apparent in the global model simulations, such as enhanced continental interior warming during both winter and summer as well as increasing winter precipitation trends over the windward slopes of regional terrain, with declining trends to the lee of major barriers. During summer there is general drying, except to the east of the Cascades. April 1 snowpack declines are large over the lower to middle slopes of regional terrain, with small snowpack increases over the lower elevations of the interior. Snow-albedo feedbacks are very different between GCM and RCM projections, with the GCM’s producing large, unphysical areas of snowpack loss and enhanced warming. Daily average winds change little under global warming, but maximum easterly winds decline modestly, driven by a preferential sea level pressure decline over the continental interior. Although temperatures warm continuously over the domain after approximately 2010, with slight acceleration over time, occurrences of temperature extremes increase rapidly during the second half of the 21st century.


2020 ◽  
Vol 172 ◽  
pp. 02006
Author(s):  
Hamed Hedayatnia ◽  
Marijke Steeman ◽  
Nathan Van Den Bossche

Understanding how climate change accelerates or slows down the process of material deterioration is the first step towards assessing adaptive approaches for the preservation of historical heritage. Analysis of the climate change effects on the degradation risk assessment parameters like salt crystallization cycles is of crucial importance when considering mitigating actions. Due to the vulnerability of cultural heritage in Iran to climate change, the impact of this phenomenon on basic parameters plus variables more critical to building damage like salt crystallization index needs to be analyzed. Regional climate modelling projections can be used to asses the impact of climate change effects on heritage. The output of two different regional climate models, the ALARO-0 model (Ghent University-RMI, Belgium) and the REMO model (HZG-GERICS, Germany), is analyzed to find out which model is more adapted to the region. So the focus of this research is mainly on the evaluation to determine the reliability of both models over the region. For model validation, a comparison between model data and observations was performed in 4 different climate zones for 30 years to find out how reliable these models are in the field of building pathology.


Sign in / Sign up

Export Citation Format

Share Document