scholarly journals Surface Albedo of the Antarctic Sea Ice Zone

2005 ◽  
Vol 18 (17) ◽  
pp. 3606-3622 ◽  
Author(s):  
Richard E. Brandt ◽  
Stephen G. Warren ◽  
Anthony P. Worby ◽  
Thomas C. Grenfell

Abstract In three ship-based field experiments, spectral albedos were measured at ultraviolet, visible, and near-infrared wavelengths for open water, grease ice, nilas, young “grey” ice, young grey-white ice, and first-year ice, both with and without snow cover. From the spectral measurements, broadband albedos are computed for clear and cloudy sky, for the total solar spectrum as well as for visible and near-infrared bands used in climate models, and for Advanced Very High Resolution Radiometer (AVHRR) solar channels. The all-wave albedos vary from 0.07 for open water to 0.87 for thick snow-covered ice under cloud. The frequency distribution of ice types and snow coverage in all seasons is available from the project on Antarctic Sea Ice Processes and Climate (ASPeCt). The ASPeCt dataset contains routine hourly visual observations of sea ice from research and supply ships of several nations using a standard protocol. Ten thousand of these observations, separated by a minimum of 6 nautical miles along voyage tracks, are used together with the measured albedos for each ice type to assign an albedo to each visual observation, resulting in “ice-only” albedos as a function of latitude for each of five longitudinal sectors around Antarctica, for each of the four seasons. These ice albedos are combined with 13 yr of ice concentration estimates from satellite passive microwave measurements to obtain the geographical and seasonal variation of average surface albedo. Most of the Antarctic sea ice is snow covered, even in summer, so the main determinant of area-averaged albedo is the fraction of open water within the pack.

2015 ◽  
Vol 56 (69) ◽  
pp. 53-64 ◽  
Author(s):  
Maria C. Zatko ◽  
Stephen G. Warren

AbstractSpectral albedos of open water, nilas, nilas with frost flowers, slush, and first-year ice with both thin and thick snow cover were measured in the East Antarctic sea-ice zone during the Sea Ice Physics and Ecosystems eXperiment II (SIPEX II) from September to November 2012, near 65°S, 120°E. Albedo was measured across the ultraviolet (UV), visible and near-infrared (nIR) wavelengths, augmenting a dataset from prior Antarctic expeditions with spectral coverage extended to longer wavelengths, and with measurement of slush and frost flowers, which had not been encountered on the prior expeditions. At visible and UV wavelengths, the albedo depends on the thickness of snow or ice; in the nIR the albedo is determined by the specific surface area. The growth of frost flowers causes the nilas albedo to increase by 0.2–0.3 in the UV and visible wavelengths. The spectral albedos are integrated over wavelength to obtain broadband albedos for wavelength bands commonly used in climate models. The albedo spectrum for deep snow on first-year sea ice shows no evidence of light-absorbing particulate impurities (LAI), such as black carbon (BC) or organics, which is consistent with the extremely small quantities of LAI found by filtering snow meltwater. Estimated BC mixing ratios were in the range 0.1–0.5 ng of carbon per gram of snow.


2012 ◽  
Vol 6 (2) ◽  
pp. 479-491 ◽  
Author(s):  
A. I. Weiss ◽  
J. C. King ◽  
T. A. Lachlan-Cope ◽  
R. S. Ladkin

Abstract. This study investigates the surface albedo of the sea ice areas adjacent to the Antarctic Peninsula during the austral summer. Aircraft measurements of the surface albedo, which were conducted in the sea ice areas of the Weddell and Bellingshausen Seas show significant differences between these two regions. The averaged surface albedo varied between 0.13 and 0.81. The ice cover of the Bellingshausen Sea consisted mainly of first year ice and the sea surface showed an averaged sea ice albedo of αi = 0.64 ± 0.2 (± standard deviation). The mean sea ice albedo of the pack ice area in the western Weddell Sea was αi = 0.75 ± 0.05. In the southern Weddell Sea, where new, young sea ice prevailed, a mean albedo value of αi = 0.38 ± 0.08 was observed. Relatively warm open water and thin, newly formed ice had the lowest albedo values, whereas relatively cold and snow covered pack ice had the highest albedo values. All sea ice areas consisted of a mixture of a large range of different sea ice types. An investigation of commonly used parameterizations of albedo as a function of surface temperature in the Weddell and Bellingshausen Sea ice areas showed that the albedo parameterizations do not work well for areas with new, young ice.


2017 ◽  
Vol 30 (6) ◽  
pp. 2251-2267 ◽  
Author(s):  
Josefino C. Comiso ◽  
Robert A. Gersten ◽  
Larry V. Stock ◽  
John Turner ◽  
Gay J. Perez ◽  
...  

Abstract The Antarctic sea ice extent has been slowly increasing contrary to expected trends due to global warming and results from coupled climate models. After a record high extent in 2012 the extent was even higher in 2014 when the magnitude exceeded 20 × 106 km2 for the first time during the satellite era. The positive trend is confirmed with newly reprocessed sea ice data that addressed inconsistency issues in the time series. The variability in sea ice extent and ice area was studied alongside surface ice temperature for the 34-yr period starting in 1981, and the results of the analysis show a strong correlation of −0.94 during the growth season and −0.86 during the melt season. The correlation coefficients are even stronger with a one-month lag in surface temperature at −0.96 during the growth season and −0.98 during the melt season, suggesting that the trend in sea ice cover is strongly influenced by the trend in surface temperature. The correlation with atmospheric circulation as represented by the southern annular mode (SAM) index appears to be relatively weak. A case study comparing the record high in 2014 with a relatively low ice extent in 2015 also shows strong sensitivity to changes in surface temperature. The results suggest that the positive trend is a consequence of the spatial variability of global trends in surface temperature and that the ability of current climate models to forecast sea ice trend can be improved through better performance in reproducing observed surface temperatures in the Antarctic region.


2016 ◽  
Vol 29 (14) ◽  
pp. 5241-5249 ◽  
Author(s):  
Paul R. Holland ◽  
Noriaki Kimura

Abstract In recent decades, Antarctic sea ice has expanded slightly while Arctic sea ice has contracted dramatically. The anthropogenic contribution to these changes cannot be fully assessed unless climate models are able to reproduce them. Process-based evaluation is needed to provide a clear view of the capabilities and limitations of such models. In this study, ice concentration and drift derived from AMSR-E data during 2003–10 are combined to derive a climatology of the ice concentration budget at both poles. This enables an observational decomposition of the seasonal dynamic and thermodynamic changes in ice cover. In both hemispheres, the results show spring ice loss dominated by ice melting. In other seasons ice divergence maintains freezing in the inner pack while advection causes melting at the ice edge, as ice is transported beyond the region where it is thermodynamically sustainable. Mechanical redistribution provides an important sink of ice concentration in the central Arctic and around the Antarctic coastline. This insight builds upon existing understanding of the sea ice cycle gained from ice and climate models, and the datasets may provide a valuable tool in validating such models in the future.


2021 ◽  
Author(s):  
Ryan Fogt ◽  
Amanda Sleinkofer ◽  
Marilyn Raphael ◽  
Mark Handcock

Abstract In stark contrast to the Arctic, there have been statistically significant positive trends in total Antarctic sea ice extent since 1979, despite a sudden decline in sea ice in 2016(1–5) and increasing greenhouse gas concentrations. Attributing Antarctic sea ice trends is complicated by the fact that most coupled climate models show negative trends in sea ice extent since 1979, opposite of that observed(6–8). Additionally, the short record of sea ice extent (beginning in 1979), coupled with the high degree of interannual variability, make the record too short to fully understand the historical context of these recent changes(9). Here we show, using new robust observation-based reconstructions, that 1) these observed recent increases in Antarctic sea ice extent are unique in the context of the 20th century and 2) the observed trends are juxtaposed against statistically significant decreases in sea ice extent throughout much of the early and middle 20th century. These reconstructions are the first to provide reliable estimates of total sea ice extent surrounding the continent; previous proxy-based reconstructions are limited(10). Importantly, the reconstructions continue to show the high degree of interannual Antarctic sea ice extent variability that is marked with frequent sudden changes, such as observed in 2016, which stress the importance of a longer historical context when assessing and attributing observed trends in Antarctic climate(9). Our reconstructions are skillful enough to be used in climate models to allow better understanding of the interconnected nature of the Antarctic climate system and to improve predictions of the future state of Antarctic climate.


2016 ◽  
Vol 105 ◽  
pp. 60-70 ◽  
Author(s):  
O. Lecomte ◽  
H. Goosse ◽  
T. Fichefet ◽  
P.R. Holland ◽  
P. Uotila ◽  
...  

2020 ◽  
Author(s):  
Stephan Paul ◽  
Marcus Huntemann

Abstract. The frequent presence of cloud cover in polar regions limits the use of the Moderate-Resolution Imageing Spectroradiometer (MODIS) and similar instruments for the investigation and monitoring of sea-ice polynyas compared to passive-microwave-based sensors. The very low thermal contrast between present clouds and the sea-ice surface in combination with the lack of available visible and near-infrared channels during polar nighttime results in deficiencies in the MODIS cloud mask and dependent MODIS data products. This leads to frequent misclassifications of i) present clouds as sea ice and ii) open-water/thin-ice areas as clouds, which results in an underestimation of polynya area and subsequently derived information. Here, we present a novel machine-learning based approach using a deep neural network that is able to reliably discriminate between clouds, sea-ice, and open-water/thin-ice areas in a given swath solely from thermal-infrared MODIS channels and additionally derived information. Compared to the reference MODIS sea-ice product, our data results in an overall increase of 31 % in annual swath-based coverage, attributed to an improved cloud-cover discrimination. Overall, higher spatial coverage results in a better sub-daily representation of thin-ice conditions that cannot be reconstructed with current state-of-the-art cloud-cover compensation methods.


1999 ◽  
Vol 26 (10) ◽  
pp. 1481-1484 ◽  
Author(s):  
Andrew B. Watkins ◽  
Ian Simmonds

2020 ◽  
Author(s):  
Isabelle Giddy ◽  
Sarah Nicholson ◽  
Marcel Du Plessis ◽  
Andy Thompson ◽  
Sebastiaan Swart

<p>The ocean surface boundary layer in the Southern Ocean plays a critical role in heat and carbon exchange with the atmosphere. Submesoscale flows have been found to be important in setting mixed layer variability in the Antarctic Circumpolar Current (ACC). However, sparsity in observations, particularly south of the ACC in the Antarctic Seasonal Ice Zone (SIZ) where the horizontal density structure of the mixed layer is influenced by sea ice melt/formation and mesoscale stirring, brings into question the ability of climate models to correctly resolve mixed layer variability. We present novel fine-scale observations of the activity of submesoscale variability in the ice-free Antarctic SIZ using three deployments of underwater gliders over an annual cycle. Salinity-dominated density fronts of O(1)km associated with strong horizontal buoyancy gradients are observed during all deployments. There is evidence that stratifying ageostrophic eddies, energised by salinity driven submesoscale fronts are active across seasons, with intermittent equivalent heat fluxes of the same order to, or greater than local atmospheric forcing. This study highlights the need to consider future changes of Antarctic sea-ice in respect to feedback mechanisms associated with salinity (sea-ice) driven submesoscale flows. </p>


Sign in / Sign up

Export Citation Format

Share Document