scholarly journals Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations

2007 ◽  
Vol 20 (8) ◽  
pp. 1419-1444 ◽  
Author(s):  
Viatcheslav V. Kharin ◽  
Francis W. Zwiers ◽  
Xuebin Zhang ◽  
Gabriele C. Hegerl

Abstract Temperature and precipitation extremes and their potential future changes are evaluated in an ensemble of global coupled climate models participating in the Intergovernmental Panel on Climate Change (IPCC) diagnostic exercise for the Fourth Assessment Report (AR4). Climate extremes are expressed in terms of 20-yr return values of annual extremes of near-surface temperature and 24-h precipitation amounts. The simulated changes in extremes are documented for years 2046–65 and 2081–2100 relative to 1981–2000 in experiments with the Special Report on Emissions Scenarios (SRES) B1, A1B, and A2 emission scenarios. Overall, the climate models simulate present-day warm extremes reasonably well on the global scale, as compared to estimates from reanalyses. The model discrepancies in simulating cold extremes are generally larger than those for warm extremes, especially in sea ice–covered areas. Simulated present-day precipitation extremes are plausible in the extratropics, but uncertainties in extreme precipitation in the Tropics are very large, both in the models and the available observationally based datasets. Changes in warm extremes generally follow changes in the mean summertime temperature. Cold extremes warm faster than warm extremes by about 30%–40%, globally averaged. The excessive warming of cold extremes is generally confined to regions where snow and sea ice retreat with global warming. With the exception of northern polar latitudes, relative changes in the intensity of precipitation extremes generally exceed relative changes in annual mean precipitation, particularly in tropical and subtropical regions. Consistent with the increased intensity of precipitation extremes, waiting times for late-twentieth-century extreme precipitation events are reduced almost everywhere, with the exception of a few subtropical regions. The multimodel multiscenario consensus on the projected change in the globally averaged 20-yr return values of annual extremes of 24-h precipitation amounts is that there will be an increase of about 6% with each kelvin of global warming, with the bulk of models simulating values in the range of 4%–10% K−1. The very large intermodel disagreements in the Tropics suggest that some physical processes associated with extreme precipitation are not well represented in models. This reduces confidence in the projected changes in extreme precipitation.

2020 ◽  
Author(s):  
Andrew Williams ◽  
Paul O'Gorman

<p>Changes in extreme precipitation are amongst the most impactful consequences of global warming, with potential effects ranging from increased flood risk and landslides to crop failures and impacts on ecosystems. Thus, understanding historical and future changes in extreme precipitation is not only important from a scientific perspective, but also has direct societal relevance.</p><p>However, while most current research has focused on annual precipitation extremes and their response to warming, it has recently been noted that climate model projections show a distinct seasonality to future changes in extreme precipitation. In particular, CMIP5 models suggest that over Northern Hemisphere (NH) land the summer response is weaker than the winter response in terms of percentage changes.</p><p>Here we investigate changes in seasonal precipitation extremes using observations and simulations with coupled climate models. First, we analyse observed trends from the Hadley Centre’s global climate extremes dataset (HadEX2) to investigate to what extent there is already a difference between summer and winter trends over NH land. Second, we use 40 ensemble members from the CESM Large Ensemble to characterize the role played by internal variability in trends over the historical period. Lastly, we use CMIP5 simulations to explore the possibility of a link between the seasonality of changes in precipitation extremes and decreases in surface relative humidity over land.</p>


2007 ◽  
Vol 20 (16) ◽  
pp. 4160-4171 ◽  
Author(s):  
A. Levermann ◽  
J. Mignot ◽  
S. Nawrath ◽  
S. Rahmstorf

Abstract An increase in atmospheric CO2 concentration and the resulting global warming are typically associated with a weakening of the thermohaline circulation (THC) in model scenarios. For the models participating in the Coupled Model Intercomparison Project (CMIP), this weakening shows a significant (r = 0.62) dependence on the initial THC strength; it is stronger for initially strong overturning. The authors propose a physical mechanism for this phenomenon based on an analysis of additional simulations with the coupled climate models CLIMBER-2 and CLIMBER-3α. The mechanism is based on the fact that sea ice cover greatly reduces heat loss from the ocean. The extent of sea ice is strongly influenced by the near-surface atmospheric temperature (SAT) in the North Atlantic but also by the strength of the THC itself, which transports heat to the convection sites. Consequently, sea ice tends to extend farther south for weaker THC. Initially larger sea ice cover responds more strongly to atmospheric warming; thus, sea ice retreats more strongly for an initially weaker THC. This sea ice retreat tends to strengthen (i.e., stabilize) the THC because the sea ice retreat allows more oceanic heat loss. This stabilizing effect is stronger for runs with weak initial THC and extensive sea ice cover. Therefore, an initially weak THC weakens less under global warming. In contrast to preindustrial climate, sea ice melting presently plays the role of an external forcing with respect to THC stability.


2021 ◽  
Vol 5 (3) ◽  
pp. 481-497
Author(s):  
Mansour Almazroui ◽  
Fahad Saeed ◽  
Sajjad Saeed ◽  
Muhammad Ismail ◽  
Muhammad Azhar Ehsan ◽  
...  

AbstractThis paper presents projected changes in extreme temperature and precipitation events by using Coupled Model Intercomparison Project phase 6 (CMIP6) data for mid-century (2036–2065) and end-century (2070–2099) periods with respect to the reference period (1985–2014). Four indices namely, Annual maximum of maximum temperature (TXx), Extreme heat wave days frequency (HWFI), Annual maximum consecutive 5-day precipitation (RX5day), and Consecutive Dry Days (CDD) were investigated under four socioeconomic scenarios (SSP1-2.6; SSP2-4.5; SSP3-7.0; SSP5-8.5) over the entire globe and its 26 Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) regions. The projections show an increase in intensity and frequency of hot temperature and precipitation extremes over land. The intensity of the hottest days (as measured by TXx) is projected to increase more in extratropical regions than in the tropics, while the frequency of extremely hot days (as measured by HWFI) is projected to increase more in the tropics. Drought frequency (as measured by CDD) is projected to increase more over Brazil, the Mediterranean, South Africa, and Australia. Meanwhile, the Asian monsoon regions (i.e., South Asia, East Asia, and Southeast Asia) become more prone to extreme flash flooding events later in the twenty-first century as shown by the higher RX5day index projections. The projected changes in extremes reveal large spatial variability within each SREX region. The spatial variability of the studied extreme events increases with increasing greenhouse gas concentration (GHG) and is higher at the end of the twenty-first century. The projected change in the extremes and the pattern of their spatial variability is minimum under the low-emission scenario SSP1-2.6. Our results indicate that an increased concentration of GHG leads to substantial increases in the extremes and their intensities. Hence, limiting CO2 emissions could substantially limit the risks associated with increases in extreme events in the twenty-first century.


2017 ◽  
Vol 30 (24) ◽  
pp. 9827-9845 ◽  
Author(s):  
Xin Zhou ◽  
Marat F. Khairoutdinov

Subdaily temperature and precipitation extremes in response to warmer SSTs are investigated on a global scale using the superparameterized (SP) Community Atmosphere Model (CAM), in which a cloud-resolving model is embedded in each CAM grid column to simulate convection explicitly. Two 10-yr simulations have been performed using present climatological sea surface temperature (SST) and perturbed SST climatology derived from the representative concentration pathway 8.5 (RCP8.5) scenario. Compared with the conventional CAM, SP-CAM simulates colder temperatures and more realistic intensity distribution of precipitation, especially for heavy precipitation. The temperature and precipitation extremes have been defined by the 99th percentile of the 3-hourly data. For temperature, the changes in the warm and cold extremes are generally consistent between CAM and SP-CAM, with larger changes in warm extremes at low latitudes and larger changes in cold extremes at mid-to-high latitudes. For precipitation, CAM predicts a uniform increase of frequency of precipitation extremes regardless of the rain rate, while SP-CAM predicts a monotonic increase of frequency with increasing rain rate and larger change of intensity for heavier precipitation. The changes in 3-hourly and daily temperature extremes are found to be similar; however, the 3-hourly precipitation extremes have a significantly larger change than daily extremes. The Clausius–Clapeyron scaling is found to be a relatively good predictor of zonally averaged changes in precipitation extremes over midlatitudes but not as good over the tropics and subtropics. The changes in precipitable water and large-scale vertical velocity are equally important to explain the changes in precipitation extremes.


2016 ◽  
Vol 29 (23) ◽  
pp. 8285-8299 ◽  
Author(s):  
Andrea J. Dittus ◽  
David J. Karoly ◽  
Sophie C. Lewis ◽  
Lisa V. Alexander ◽  
Markus G. Donat

Abstract The skill of eight climate models in simulating the variability and trends in the observed areal extent of daily temperature and precipitation extremes is evaluated across five large-scale regions, using the climate extremes index (CEI) framework. Focusing on Europe, North America, Asia, Australia, and the Northern Hemisphere, results show that overall the models are generally able to simulate the decadal variability and trends of the observed temperature and precipitation components over the period 1951–2005. Climate models are able to reproduce observed increasing trends in the area experiencing warm maximum and minimum temperature extremes, as well as, to a lesser extent, increasing trends in the areas experiencing an extreme contribution of heavy precipitation to total annual precipitation for the Northern Hemisphere regions. Using simulations performed under different radiative forcing scenarios, the causes of simulated and observed trends are investigated. A clear anthropogenic signal is found in the trends in the maximum and minimum temperature components for all regions. In North America, a strong anthropogenically forced trend in the maximum temperature component is simulated despite no significant trend in the gridded observations, although a trend is detected in a reanalysis product. A distinct anthropogenic influence is also found for trends in the area affected by a much-above-average contribution of heavy precipitation to annual precipitation totals for Europe in a majority of models and to varying degrees in other Northern Hemisphere regions. However, observed trends in the area experiencing extreme total annual precipitation and extreme number of wet and dry days are not reproduced by climate models under any forcing scenario.


2021 ◽  
Author(s):  
Xin Li

<p>Spatioteporal variability of precipitation extremes is increasingly the focus of attention in both the climate and hydrology communites, especailly in the context of global climate change. Indicated by the Clausius-Clapeyron equation under the constant relative humudity assumption, it is expected, from the thermodynamic perspective, that extreme precipitation would increase as globe warms. However, when it comes to the regional response of precipitation to global warming, the resutls could be highly uncertain due to the influences of dynamic factors such as large-scale circlation patterns and local effects. Here, we investigate trends in a set of extreme precipitation indices (EPIs) over the Yangtze River Basin (YRB) during the period of 1960-2019. Also, we explore the possible associations between spatiotemporal variability of the EPIs and global warming, ENSO, and local effects. Our resutls show marked rising trends in frequency and intensity of Yangtze precipitation extremes. Global warming tends to enhance the frequency and intensity of preciptation extremes over the YRB. The La Niña phase of ENSO could lead to an increase of precipitation extremes in the current year, but a decrease of precipitation extremes in the coming year. Local warming mainly exerts a reducing effect on precipitation extremes, which is likely associated with the significant decrease of relative humidity in the YRB. Our findings highlight the need for a systematic approach to investigate changes in precipitation extremes over the YRB.</p>


2019 ◽  
Vol 58 (6) ◽  
pp. 1267-1278 ◽  
Author(s):  
Cristina L. Archer ◽  
Joseph F. Brodie ◽  
Sara A. Rauscher

AbstractThe goal of this study is to evaluate the effects of anthropogenic climate change on air quality, in particular on ozone, during the summer in the U.S. mid-Atlantic region. First, we establish a connection between high-ozone (HO) days, defined as those with observed 8-h average ozone concentration greater than 70 parts per billion (ppb), and certain weather patterns, called synoptic types. We identify four summer synoptic types that most often are associated with HO days based on a 30-yr historical period (1986–2015) using NCEP–NCAR reanalysis. Second, we define thresholds for mean near-surface temperature and precipitation that characterize HO days during the four HO synoptic types. Next, we look at climate projections from five models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the early and late midcentury (2025–34 and 2045–54) and analyze the frequency of HO days. We find a general increasing trend, weaker in the early midcentury and stronger in the late midcentury, with 2 and 5 extra HO days per year, respectively, from 16 in 2015. These 5 extra days are the result of two processes. On one hand, the four HO synoptic types will increase in frequency, which explains about 1.5–2 extra HO days. The remaining 3–3.5 extra days are explained by the increase in near-surface temperatures during the HO synoptic types. Future air quality regulations, which have been successful in the historical period at reducing ozone concentrations in the mid-Atlantic, may need to become stricter to compensate for the underlying increasing trends from global warming.


2012 ◽  
Vol 25 (2) ◽  
pp. 720-733 ◽  
Author(s):  
Dargan M. W. Frierson ◽  
Yen-Ting Hwang

Abstract Recent studies with climate models have demonstrated the power of extratropical forcing in causing the intertropical convergence zone (ITCZ) to shift northward or southward, and paleoclimate data support the notion that there have been large shifts in the ITCZ over time. It is shown that similar notions apply to slab ocean simulations of global warming. Nine slab ocean model simulations from different modeling centers show a wide range of ITCZ shifts in response to doubling carbon dioxide concentrations, which are experienced in a rather zonally symmetric way in the tropics. Using an attribution strategy based on fundamental energetic constraints, it is shown that responses of clouds and ice in the extratropics explain much of the range of ITCZ responses. There are also some positive feedbacks within the tropics due to increasing water vapor content and high clouds in the new ITCZ location, which amplify the changes driven from the extratropics. This study shows the clear importance of simulating extratropical climate responses with fidelity, because in addition to their local importance, the impacts of these climate responses have a large nonlocal impact on rainfall in the tropics.


Sign in / Sign up

Export Citation Format

Share Document