scholarly journals Atmospheric Flow Development and Associated Changes in Turbulent Sensible Heat Flux over a Patchy Mountain Snow Cover

2015 ◽  
Vol 16 (3) ◽  
pp. 1315-1340 ◽  
Author(s):  
Rebecca Mott ◽  
Megan Daniels ◽  
Michael Lehning

Abstract In this study, the small-scale boundary layer dynamics and the energy balance over a fractional snow cover are numerically investigated. The atmospheric boundary layer flows over a patchy snow cover were calculated with an atmospheric model (Advanced Regional Prediction System) on a very high spatial resolution of 5 m. The numerical results revealed that the development of local flow patterns and the relative importance of boundary layer processes depend on the snow patch size distribution and the synoptic wind forcing. Energy balance calculations for quiescent wind situations demonstrated that well-developed katabatic winds exerted a major control on the energy balance over the patchy snow cover, leading to a maximum in the mean downward sensible heat flux over snow for high snow-cover fractions. This implies that if katabatic winds develop, total melt of snow patches may decrease for low snow-cover fractions despite an increasing ambient air temperature, which would not be predicted by most hydrological models. In contrast, stronger synoptic winds increased the effect of heat advection on the catchment’s melt behavior by enhancing the mean sensible heat flux over snow for lower snow-cover fractions. A sensitivity analysis to grid resolution suggested that the grid size is a critical factor for modeling the energy balance of a patchy snow cover. The comparison of simulation results from coarse (50 m) and fine (5 m) horizontal resolutions revealed a difference in the spatially averaged turbulent heat flux over snow of 40%–70% for synoptic cases and 95% for quiescent cases.

2020 ◽  
Vol 13 (6) ◽  
pp. 3221-3233 ◽  
Author(s):  
Andreas Behrendt ◽  
Volker Wulfmeyer ◽  
Christoph Senff ◽  
Shravan Kumar Muppa ◽  
Florian Späth ◽  
...  

Abstract. We present the first measurement of the sensible heat flux (H) profile in the convective boundary layer (CBL) derived from the covariance of collocated vertical-pointing temperature rotational Raman lidar and Doppler wind lidar measurements. The uncertainties of the H measurements due to instrumental noise and limited sampling are also derived and discussed. Simultaneous measurements of the latent heat flux profile (L) and other turbulent variables were obtained with the combination of water-vapor differential absorption lidar (WVDIAL) and Doppler lidar. The case study uses a measurement example from the HOPE (HD(CP)2 Observational Prototype Experiment) campaign, which took place in western Germany in 2013 and presents a cloud-free well-developed quasi-stationary CBL. The mean boundary layer height zi was at 1230 m above ground level. The results show – as expected – positive values of H in the middle of the CBL. A maximum of (182±32) W m−2, with the second number for the noise uncertainty, is found at 0.5 zi. At about 0.7 zi, H changes sign to negative values above. The entrainment flux was (-62±27) W m−2. The mean sensible heat flux divergence in the observed part of the CBL above 0.3 zi was −0.28 W m−3, which corresponds to a warming of 0.83 K h−1. The L profile shows a slight positive mean flux divergence of 0.12 W m−3 and an entrainment flux of (214±36) W m−2. The combination of H and L profiles in combination with variance and other turbulent parameters is very valuable for the evaluation of large-eddy simulation (LES) results and the further improvement and validation of turbulence parameterization schemes.


2014 ◽  
Vol 15 (1) ◽  
pp. 143-158 ◽  
Author(s):  
Cezar Kongoli ◽  
William P. Kustas ◽  
Martha C. Anderson ◽  
John M. Norman ◽  
Joseph G. Alfieri ◽  
...  

Abstract The utility of a snow–vegetation energy balance model for estimating surface energy fluxes is evaluated with field measurements at two sites in a rangeland ecosystem in southwestern Idaho during the winter of 2007: one site dominated by aspen vegetation and the other by sagebrush. Model parameterizations are adopted from the two-source energy balance (TSEB) modeling scheme, which estimates fluxes from the vegetation and surface substrate separately using remotely sensed measurements of land surface temperature. Modifications include development of routines to account for surface snowmelt energy flux and snow masking of vegetation. Comparisons between modeled and measured surface energy fluxes of net radiation and turbulent heat showed reasonable agreement when considering measurement uncertainties in snow environments and the simplified algorithm used for the snow surface heat flux, particularly on a daily basis. There was generally better performance over the aspen field site, likely due to more reliable input data of snow depth/snow cover. The model was robust in capturing the evolution of surface energy fluxes during melt periods. The model behavior was also consistent with previous studies that indicate the occurrence of upward sensible heat fluxes during daytime owing to solar heating of vegetation limbs and branches, which often exceeds the downward sensible heat flux driving the snowmelt. However, model simulations over aspen trees showed that the upward sensible heat flux could be reversed for a lower canopy fraction owing to the dominance of downward sensible heat flux over snow. This indicates that reliable vegetation or snow cover fraction inputs to the model are needed for estimating fluxes over snow-covered landscapes.


2011 ◽  
Vol 5 (4) ◽  
pp. 1083-1098 ◽  
Author(s):  
R. Mott ◽  
L. Egli ◽  
T. Grünewald ◽  
N. Dawes ◽  
C. Manes ◽  
...  

Abstract. Mountain snow covers typically become patchy over the course of a melting season. The snow pattern during melt is mainly governed by the end of winter snow depth distribution and the local energy balance. The objective of this study is to investigate micro-meteorological processes driving snow ablation in an Alpine catchment. For this purpose we combine a meteorological boundary-layer model (Advanced Regional Prediction System) with a fully distributed energy balance model (Alpine3D). Turbulent fluxes above melting snow are further investigated by using data from eddy-correlation systems. We compare modeled snow ablation to measured ablation rates as obtained from a series of Terrestrial Laser Scanning campaigns covering a complete ablation season. The measured ablation rates indicate that the advection of sensible heat causes locally increased ablation rates at the upwind edges of the snow patches. The effect, however, appears to be active over rather short distances of about 4–6 m. Measurements suggest that mean wind velocities of about 5 m s−1 are required for advective heat transport to increase snow ablation over a long fetch distance of about 20 m. Neglecting this effect, the model is able to capture the mean ablation rates for early ablation periods but strongly overestimates snow ablation once the fraction of snow coverage is below a critical value of approximately 0.6. While radiation dominates snow ablation early in the season, the turbulent flux contribution becomes important late in the season. Simulation results indicate that the air temperatures appear to overestimate the local air temperature above snow patches once the snow coverage is low. Measured turbulent fluxes support these findings by suggesting a stable internal boundary layer close to the snow surface causing a strong decrease of the sensible heat flux towards the snow cover. Thus, the existence of a stable internal boundary layer above a patchy snow cover exerts a dominant control on the timing and magnitude of snow ablation for patchy snow covers.


2022 ◽  
Vol 16 (1) ◽  
pp. 127-142
Author(s):  
Georg Lackner ◽  
Florent Domine ◽  
Daniel F. Nadeau ◽  
Annie-Claude Parent ◽  
François Anctil ◽  
...  

Abstract. Arctic landscapes are covered in snow for at least 6 months of the year. The energy balance of the snow cover plays a key role in these environments, influencing the surface albedo, the thermal regime of the permafrost, and other factors. Our goal is to quantify all major heat fluxes above, within, and below a low-Arctic snowpack at a shrub tundra site on the east coast of Hudson Bay in eastern Canada. The study is based on observations from a flux tower that uses the eddy covariance approach and from profiles of temperature and thermal conductivity in the snow and soil. Additionally, we compared the observations with simulations produced using the Crocus snow model. We found that radiative losses due to negative longwave radiation are mostly counterbalanced by the sensible heat flux, whereas the latent heat flux is minimal. At the snow surface, the heat flux into the snow is similar in magnitude to the sensible heat flux. Because the snow cover stores very little heat, the majority of the upward heat flux in the snow is used to cool the soil. Overall, the model was able to reproduce the observed energy balance, but due to the effects of atmospheric stratification, it showed some deficiencies when simulating turbulent heat fluxes at an hourly timescale.


2019 ◽  
Author(s):  
Andreas Behrendt ◽  
Volker Wulfmeyer ◽  
Christoph Senff ◽  
Shravan Kumar Muppa ◽  
Florian Späth ◽  
...  

Abstract. We present the first measurement of the sensible heat flux (H) profile in the convective boundary layer (CBL) derived from the covariance of collocated vertical-pointing temperature rotational Raman lidar and Doppler wind lidar measurements. The uncertainties of the H measurements due to instrumental noise and limited sampling are also derived and discussed. Simultaneous measurements of the latent heat flux profile (L) and other turbulent variables were obtained with the combination of water-vapor DIAL and Doppler lidar. The measurement example is from the HOPE campaign, which took place in western Germany in 2013 and presents a cloud-free well-developed quasi-stationary CBL. The mean boundary layer height z_i was at 1230 m above ground level. The results show – as expected – positive values of H in the middle of the CBL. A maximum of (182 ± 32) W/m2, with the second number for the noise uncertainty, is found at 0.5 z_i. At about 0.7 z_i, H changes sign to negative values above. The entrainment flux was (−62 ± 27) W/m2. The mean sensible heat flux divergence in the observed part of the CBL above 0.3 z_i was −0.28 W/m3, which corresponds to a warming of 0.83 K/h. The L profile shows a slight positive mean flux divergence of 0.12 W/m3 and an entrainment flux of (214 ± 36) W/m2. The combination of H and L profiles in combination with variance and other turbulent parameters is very valuable for the evaluation of large-eddy simulation (LES) results and the further improvement and validation of turbulence parameterization schemes.


2021 ◽  
Author(s):  
Georg Lackner ◽  
Florent Dominé ◽  
Daniel F. Nadeau ◽  
Annie-Claude Parent ◽  
François Anctil ◽  
...  

Abstract. Arctic landscapes are covered in snow for at least six months of the year. The energy balance of the snow cover plays a key role in these environments, influencing the surface albedo, the thermal regime of the permafrost, and other factors. Our goal is to quantify all major heat fluxes above, within, and below a low Arctic snowpack at a shrub tundra site on the east coast of Hudson Bay in eastern Canada. The study is based on observations from a flux tower that uses the eddy covariance approach and from profiles of temperature and thermal conductivity in the snow and soil. Additionally, we compared the observations with simulations produced using the Crocus snow model. We found that radiative losses due to negative longwave radiation are mostly counterbalanced by the sensible heat flux, whereas the latent heat flux is minimal. At the snow surface, the heat flux into the snow is similar in magnitude to the sensible heat flux. Because the snow cover stores very little heat, the majority of the heat flux into the snow is used to cool the soil. Overall, the model was able to reproduce the observed energy balance, but due to the effects of atmospheric stratification, showed some deficiencies when simulating turbulent heat fluxes at an hourly time scale.


1990 ◽  
Vol 36 (123) ◽  
pp. 217-221 ◽  
Author(s):  
Roger J. Braithwaite ◽  
Ole B. Olesen

AbstractDaily ice ablation on two outlet glaciers from the Greenland ice sheet, Nordbogletscher (1979–83) and Qamanârssûp sermia (1980–86), is related to air temperature by a linear regression equation. Analysis of this ablation-temperature equation with the help of a simple energy-balance model shows that sensible-heat flux has the greatest temperature response and accounts for about one-half of the temperature response of ablation. Net radiation accounts for about one-quarter of the temperature response of ablation, and latent-heat flux and errors account for the remainder. The temperature response of sensible-heat flux at QQamanârssûp sermia is greater than at Nordbogletscher mainly due to higher average wind speeds. The association of high winds with high temperatures during Föhn events further increases sensible-heat flux. The energy-balance model shows that ablation from a snow surface is only about half that from an ice surface at the same air temperature.


Polar Record ◽  
2000 ◽  
Vol 36 (196) ◽  
pp. 3-18 ◽  
Author(s):  
P. Prosek ◽  
M. Janouch ◽  
K. Láska

AbstractThis article presents the results of measurements of the components of ground-surface energy balance (radiation balance, sensible heat flux, latent heat flux, and ground heat flux) taken during the 1994/95 summer season at Poland's Henryk Arctowski Station, King George Island, South Shetland Islands (62°09'42”S, 58°28'10”W). This was the first time that these complex measurements had been taken in the central part of the South Shetlands archipelago. The results are evaluated at the level of daily and seasonal fluctuations. The consequences of energy balance on the temperature conditions of the soil substrata are highlighted. The verification of the degree of influence of a subset of energy-balance components on soil temperature allowed analysis of the relationships among soil temperature, radiation balance, and sensible heat flux. This analysis leads to the conclusion that there is a rapid reaction of the soil temperature to the radiation balance and sensible heat flux to a depth of 5 cm. The boundary atmosphere and soil substrate represent the basic components of the ecotops of the Antarctic vegetation oasis, so these results are interpreted in pedological or botanical studies in the search for environmental influences on the vegetation.


2005 ◽  
Vol 9 (6) ◽  
pp. 607-613 ◽  
Author(s):  
J. Roberts ◽  
P. Rosier ◽  
D. M. Smith

Abstract. The impact on recharge to the Chalk aquifer of substitution of broadleaved woodland for pasture is a matter of concern in the UK. Hence, measurements of energy balance components were made above beech woodland and above pasture, both growing on shallow soils over chalk in Hampshire. Latent heat flux (evaporation) was calculated as the residual from these measurements of energy balances in which sensible heat flux was measured with an eddy correlation instrument that determined fast response vertical wind speeds and associated temperature changes. Assessment of wind turbulence statistics confirmed that the eddy correlation device performed satisfactorily in both wet and dry conditions. There was excellent agreement between forest transpiration measurements made by eddy correlation and stand level tree transpiration measured with sap flow devices. Over the period of the measurements, from March 1999 to late summer 2000, changes in soil water content were small and grassland evaporation and transpiration estimated from energy balance-eddy flux measurements were in excellent agreement with Penman estimates of potential evaporation. Over the 18-month measurement period, the cumulative difference between broadleaved woodland and grassland was small but evaporation from the grassland was 3% higher than that from the woodland. In the springs of 1999 and 2000, evaporation from the grassland was greater than that from the woodland. However, following leaf emergence in the woodland, the difference in cumulative evaporation diminished until the following spring.


Sign in / Sign up

Export Citation Format

Share Document