scholarly journals Effects of Urbanization and Climate Change on Peak Flows over the San Antonio River Basin, Texas

2016 ◽  
Vol 17 (9) ◽  
pp. 2371-2389 ◽  
Author(s):  
Gang Zhao ◽  
Huilin Gao ◽  
Lan Cuo

Abstract A thorough understanding of the peak flows under urbanization and climate change—with the associated uncertainties—is indispensable for mitigating the negative social, economic, and environmental impacts from flooding. In this paper, a case study was conducted by applying the Distributed Hydrology Soil Vegetation Model (DHSVM) to the San Antonio River basin (SARB), Texas. Historical and future land-cover maps were assembled to represent the urbanization process. Future climate and its uncertainties were represented by a series of designed scenarios using the Change Factor (CF) method. The factors were calculated by comparing the model ensemble from phase 5 of the Coupled Model Intercomparison Project (CMIP5) with baseline historical climatology during two future periods (2020–49, period 1; 2070–99, period 2). It was found that with urban impervious areas increasing alone, annual peak flows may increase from 601 (period 1) to 885 m3 s−1 (period 2). With regard to climate change, annual peak flows driven by forcings from maximum, median, and minimum CFs under four representative concentration pathways (RCPs) were analyzed. While the median values of future annual peak flows—forced by the median CF values—are very similar to the baseline under all RCPs, in each case the uncertainty range (calculated as the difference between annual peak flows driven by the maximum and minimum CFs) is very large. When urbanization and climate change coevolve, these averaged annual peak flows from the four RCPs will increase from 447 (period 1) to 707 m3 s−1 (period 2), with the uncertainties associated with climate change more than 3 times greater than those from urbanization.

2013 ◽  
Vol 17 (19) ◽  
pp. 1-22 ◽  
Author(s):  
G. T. Aronica ◽  
B. Bonaccorso

Abstract In recent years, increasing attention has been paid to hydropower generation, since it is a renewable, efficient, and reliable source of energy, as well as an effective tool to reduce the atmospheric concentrations of greenhouse gases resulting from human activities. At the same time, however, hydropower is among the most vulnerable industries to global warming, because water resources are closely linked to climate changes. Indeed, the effects of climate change on water availability are expected to affect hydropower generation with special reference to southern countries, which are supposed to face dryer conditions in the next decades. The aim of this paper is to qualitatively assess the impact of future climate change on the hydrological regime of the Alcantara River basin, eastern Sicily (Italy), based on Monte Carlo simulations. Synthetic series of daily rainfall and temperature are generated, based on observed data, through a first-order Markov chain and an autoregressive moving average (ARMA) model, respectively, for the current scenario and two future scenarios at 2025. In particular, relative changes in the monthly mean and standard deviation values of daily rainfall and temperature at 2025, predicted by the Hadley Centre Coupled Model, version 3 (HadCM3) for A2 and B2 greenhouse gas emissions scenarios, are adopted to generate future values of precipitation and temperature. Synthetic series for the two climatic scenarios are then introduced as input into the Identification of Unit Hydrographs and Component Flows from Rainfall, Evapotranspiration and Streamflow Data (IHACRES) model to simulate the hydrological response of the basin. The effects of climate change are investigated by analyzing potential modification of the resulting flow duration curves and utilization curves, which allow a site's energy potential for the design of run-of-river hydropower plants to be estimated.


Author(s):  
Peter Kishiwa ◽  
Joel Nobert ◽  
Victor Kongo ◽  
Preksedis Ndomba

Abstract. This study was designed to investigate the dynamics of current and future surface water availability for different water users in the upper Pangani River Basin under changing climate. A multi-tier modeling technique was used in the study, by coupling the Soil and Water Assessment Tool (SWAT) and Water Evaluation And Planning (WEAP) models, to simulate streamflows under climate change and assess scenarios of future water availability to different socio-economic activities by year 2060. Six common Global Circulation Models (GCMs) from WCRP-CMIP3 with emissions Scenario A2 were selected. These are HadCM3, HadGEM1, ECHAM5, MIROC3.2MED, GFDLCM2.1 and CSIROMK3. They were downscaled by using LARS-WG to station scale. The SWAT model was calibrated with observed data and utilized the LARS-WG outputs to generate future streamflows before being used as input to WEAP model to assess future water availability to different socio-economic activities. GCMs results show future rainfall increase in upper Pangani River Basin between 16–18 % in 2050s relative to 1980–1999 periods. Temperature is projected to increase by an average of 2 ∘C in 2050s, relative to baseline period. Long-term mean streamflows is expected to increase by approximately 10 %. However, future peak flows are estimated to be lower than the prevailing average peak flows. Nevertheless, the overall annual water demand in Pangani basin will increase from 1879.73 Mm3 at present (2011) to 3249.69 Mm3 in the future (2060s), resulting to unmet demand of 1673.8 Mm3 (51.5 %). The impact of future shortage will be more severe in irrigation where 71.12 % of its future demand will be unmet. Future water demands of Hydropower and Livestock will be unmet by 27.47 and 1.41 % respectively. However, future domestic water use will have no shortage. This calls for planning of current and future surface water use in the upper Pangani River Basin.


2019 ◽  
Vol 32 (23) ◽  
pp. 8181-8203 ◽  
Author(s):  
M. Hoerling ◽  
J. Barsugli ◽  
B. Livneh ◽  
J. Eischeid ◽  
X. Quan ◽  
...  

Abstract Upper Colorado River basin streamflow has declined by roughly 20% over the last century of the instrumental period, based on estimates of naturalized flow above Lees Ferry. Here we assess factors causing the decline and evaluate the premise that rising surface temperatures have been mostly responsible. We use an event attribution framework involving parallel sets of global model experiments with and without climate change drivers. We demonstrate that climate change forcing has acted to reduce Upper Colorado River basin streamflow during this period by about 10% (with uncertainty range of 6%–14% reductions). The magnitude of the observed flow decline is found to be inconsistent with natural variability alone, and approximately one-half of the observed flow decline is judged to have resulted from long-term climate change. Each of three different global models used herein indicates that climate change forcing during the last century has acted to increase surface temperature (~+1.2°C) and decrease precipitation (~−3%). Using large ensemble methods, we diagnose the separate effects of temperature and precipitation changes on Upper Colorado River streamflow. Precipitation change is found to be the most consequential factor owing to its amplified impact on flow resulting from precipitation elasticity (percent change in streamflow per percent change in precipitation) of ~2. We confirm that warming has also driven streamflow declines, as inferred from empirical studies, although operating as a secondary factor. Our finding of a modest −2.5% °C−1 temperature sensitivity, on the basis of our best model-derived estimate, indicates that only about one-third of the attributable climate change signal in Colorado River decline resulted from warming, whereas about two-thirds resulted from precipitation decline.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 332
Author(s):  
Marx Vinicius Maciel da Silva ◽  
Cleiton da Silva Silveira ◽  
José Micael Ferreira da Costa ◽  
Eduardo Sávio Passos Rodrigues Martins ◽  
Francisco das Chagas Vasconcelos Júnior

Climate change impacts may influence hydropower generation, especially with the intensification of extreme events and growing demand. In this study, we analyzed future hydroelectric generation using a set of scenarios considering both climate change and consumptive demands in the São Francisco River Basin. This project will increase consumptive demands for the coming decades. Five models from the recently released Coupled Model Intercomparison Project Phase 6 and two scenarios, SSP2-4.5 and SSP5-8.5, were considered to estimate climate change projections. The affluent natural flows, regulated flows, and the hydroelectric energy generated were estimated for four multi-purpose reservoirs considering all existing and new demands. The conjunction of scenarios indicated a possible significant reduction in water availability, increased consumptive demands, especially for irrigation, and reduced power generation. Only at the Sobradinho hydroelectric plant, the decrease ranged from −30% to −50% for the period 2021 to 2050 compared to the historical period (1901 to 2000). The results can provide insights into future energy generation and water resources management in the basin.


2021 ◽  
Author(s):  
Loris Compagno ◽  
Sarah Eggs ◽  
Matthias Huss ◽  
Harry Zekollari ◽  
Daniel Farinotti

<p>With the Paris Agreement, leaders of the world have recognized the urgency of limiting ongoing, anthropogenic climate change. In preparation of the upcoming 26<sup>th</sup> UN Climate Change Conference of the Parties, discussions have been focusing on the difference of limiting the increase in global average temperatures below 1.0, 1.5, or 2.0°C compared to pre-industrial levels. Here, we assess the impacts that such different scenarios would have on both the future evolution of glaciers in the European Alps and the water resources they provide. We force the combined glacier mass balance and ice flow model GloGEMflow with climate projections from Coupled Model Intercomparison Project Phase 6 (CMIP6), and compute the area and volume evolution of all 3926 glaciers of the European Alps for the period 1990 to 2100. Our results show that the different temperature targets have important implications for the predicted changes: in a +1.0°C scenario, glaciers in the European Alpsare<span>  </span>projected to lose 44 ± 21 % of their 2020 ice volume; 68 ± 12 % in a +1.5 °C scenario; while 81 ± 8% in a +2.0°C scenario. The changes in glacier volume will strongly impact the water yield from presently-glacierized catchments, with 2080-2100 yearly average runoffs decreasing by 25 ± 6% (for a global warming of +1.0°C), 32 ± 8%, (+1.5°C) and 36 ± 10% (+2.0°C) when compared to 2000-2020 levels. Changes in peak runoff -- anticipated to occur 1 to 2 months earlier by the end of the century than it does today -- will be even more pronounced, with reductions of 23 ± 15 %, 29 ± 14 %, and 37 ± 15 % in the three warming scenarios, respectively.</p>


2013 ◽  
Vol 26 (19) ◽  
pp. 7372-7391 ◽  
Author(s):  
Daniel R. Marsh ◽  
Michael J. Mills ◽  
Douglas E. Kinnison ◽  
Jean-Francois Lamarque ◽  
Natalia Calvo ◽  
...  

Abstract The NCAR Community Earth System Model (CESM) now includes an atmospheric component that extends in altitude to the lower thermosphere. This atmospheric model, known as the Whole Atmosphere Community Climate Model (WACCM), includes fully interactive chemistry, allowing, for example, a self-consistent representation of the development and recovery of the stratospheric ozone hole and its effect on the troposphere. This paper focuses on analysis of an ensemble of transient simulations using CESM1(WACCM), covering the period from the preindustrial era to present day, conducted as part of phase 5 of the Coupled Model Intercomparison Project. Variability in the stratosphere, such as that associated with stratospheric sudden warmings and the development of the ozone hole, is in good agreement with observations. The signals of these phenomena propagate into the troposphere, influencing near-surface winds, precipitation rates, and the extent of sea ice. In comparison of tropospheric climate change predictions with those from a version of CESM that does not fully resolve the stratosphere, the global-mean temperature trends are indistinguishable. However, systematic differences do exist in other climate variables, particularly in the extratropics. The magnitude of the difference can be as large as the climate change response itself. This indicates that the representation of stratosphere–troposphere coupling could be a major source of uncertainty in climate change projections in CESM.


Author(s):  
Andre Schardong ◽  
Slobodan P. Simonovic

Global Climate Models (GCMs) are currently the most powerful tools for accessing changes in the hydrological regime at the watershed scale due to climate change and variability. GCMs, however, have limitations due to their coarse spatial and temporal resolutions.  Regional Climate Models (RCMs) are often referred to as suitable alternatives due to their higher resolution of the long-term climate projections. It is expected that RCMs are better for simulating extreme conditions than the GCMs. This  present work, investigate the difference in updated IDF (Intensity-Duration-Frequency) relationships developed using GCMs and RCMs. The IDF updating method implemented with the IDF_CC tool for Canada has been used for comparison. The analyses are conducted using 369 selected Environment and Climate Change Canada hydro-meteorological stations from the IDF_CC tool database with record length longer than 20 years. Results for the future period (2020-2100), are based on multi-model ensembles of (i) the RCMs from the NA-CORDEX (North-American Coordinated Regional Climate Downscaling Experiment) project (ensemble 1) (ii) a sub-set of six GCMs from the GCMs available in the IDF_CC tool used as drivers for the RCMs (ensemble 2) and (iii) all 24 GCMs from the IDF_CC tool database (ensemble 3). One representative concentration pathway (RCP), RCP 8.5, is used in the analysis. The RCMs from the NA-CORDEX project selected for this study use six GCMs as drivers to produce the future predictions for the North American continent, including Canada. Two metrics are applied for the comparison of results: (i) the difference in projected precipitation using the multi-model ensemble median; and (ii) the difference in uncertainty range. The uncertainty range is defined in this study as the percentage projected change in future, 25 to 75 quantiles obtained using the RCMs a GCMs ensembles. The regional models from the NA-CORDEX project generated lower extreme precipitation projections than the GCMs for the stations located in the Canadian prairies (provinces of Alberta, Saskatchewan, Manitoba). Stations located at the East and West coasts of Canada show a smaller difference in the projected extremes obtained using GCMs and RCMs. The use of RCMs shows increase in uncertainty when compared to GCMs. This result indicates that even when using regional climate models, it’s advisable to extend the analyses and include as many as possible models from different climate centers.


2020 ◽  
Vol 15 (3) ◽  
pp. 324-334 ◽  
Author(s):  
Hnin Thiri Myo ◽  
Win Win Zin ◽  
Kyi Pyar Shwe ◽  
Zin Mar Lar Tin San ◽  
Akiyuki Kawasaki ◽  
...  

Climate change affects both the temperature and precipitation, leading to changes in river runoff. The Bago River basin is one of the most important agricultural regions in the Ayeyarwady Delta of Myanmar, and this paper aims to evaluate the impact of climate change on it. Linear scaling was used as the bias-correction method for ten general circulation models (GCMs) participating in the fifth phase of the Coupled Model Intercomparison Project. Future climate scenarios are predicted for three 27-year periods: the near future (2020–2046), middle future (2047–2073), and far future (2074–2100) with a baseline period of (1981–2005) under two Representative Concentration Pathway (RCP) scenarios: RCP4.5 and RCP8.5 of the IPCC Assessment Report 5 (AR5). The Hydrologic Engineering Center-Hydrologic Modeling System model is used to predict future discharge changes for the Bago River considering future average precipitation for all three future periods. Among the GCMs used to simulate meteorological data in the Ayeyarwady Delta zone, the Model for Interdisciplinary Research on Climate-Earth System is the most suitable. It predicts that average monthly precipitation will fluctuate and that average annual precipitation will increase. Both average monthly and annual temperatures are expected to increase at the end of the 21st century under RCP4.5 and RCP8.5 scenarios. The simulation shows that the Bago River discharge will increase for all three future periods under both scenarios.


2016 ◽  
Vol 20 (4) ◽  
pp. 1331-1353 ◽  
Author(s):  
Amir K. Basheer ◽  
Haishen Lu ◽  
Abubaker Omer ◽  
Abubaker B. Ali ◽  
Abdeldime M. S. Abdelgader

Abstract. The fate of seasonal river ecosystem habitats under climate change essentially depends on the changes in annual recharge of the river, which are related to alterations in precipitation and evaporation over the river basin. Therefore, the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in the Dinder River basin (DRB) and to infer its relative possible effects on the Dinder National Park (DNP) ecosystem habitats in Sudan. Four global circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined with a hydrological model (SWAT – the Soil and Water Assessment Tool) were used to project the climate change conditions over the study periods 2020s, 2050s, and 2080s. The results indicated that the climate over the DRB will become warmer and wetter under most scenarios. The projected precipitation variability mainly depends on the selected GCM and downscaling approach. Moreover, the projected streamflow is quite sensitive to rainfall and temperature variation, and will likely increase in this century. In contrast to drought periods during the 1960s, 1970s, and 1980s, the predicted climate change is likely to affect ecosystems in DNP positively and promote the ecological restoration for the habitats of flora and fauna.


Sign in / Sign up

Export Citation Format

Share Document