scholarly journals Seasonal Variation in Canopy Aerodynamics and the Sensitivity of Transpiration Estimates to Wind Velocity in Broadleaved Deciduous Species

2016 ◽  
Vol 17 (12) ◽  
pp. 3029-3043 ◽  
Author(s):  
D. M. Barnard ◽  
W. L. Bauerle

Abstract Characterization of seasonal dynamics in wind speed attenuation within a plant canopy α is necessary for modeling leaf boundary layer conductance , canopy–atmosphere coupling Ω, and transpiration at multiple scales. The goals of this study were to characterize seasonal variation in α in four tree species with canopy wind profiles and a canopy-structure model, to quantify the impact of α on estimates of and Ω, and to determine the influence of variable wind speed on transpiration estimates from a biophysical model [Multi-Array Evaporation Stand Tree Radiation Assemblage (MAESTRA)]. Among species, α varied significantly with above-canopy wind speed and seasonal canopy development. At the mean above-canopy wind speed (1.5 m s−1), α could be predicted using a linear model with leaf area index as the input variable (coefficient of determination R2 = 0.78). However, the canopy-structure model yielded improved predictions (R2 = 0.92) by including canopy height and leaf width. By midseason, increasing canopy leaf area and α resulted in lower within-canopy wind speeds, a decrease in by 20%–50%, and a peak in Ω. Testing a discrete increase in wind speed (0.6–2.4 m s−1; seasonal mean plus/minus one standard deviation) had variable influence on transpiration estimates (from −30% to +20%), which correlated strongly with vapor pressure deficit (R2 = 0.83). Given the importance of α in accurate representation of , Ω, and transpiration, it is concluded that α needs to be given special attention in plant canopies that undergo substantial seasonal changes, especially densely foliated canopies (i.e., leaf area index >1) and in areas with lower native wind speeds (i.e., <2 m s−1).

2021 ◽  
Vol 13 (8) ◽  
pp. 1427
Author(s):  
Kasturi Devi Kanniah ◽  
Chuen Siang Kang ◽  
Sahadev Sharma ◽  
A. Aldrie Amir

Mangrove is classified as an important ecosystem along the shorelines of tropical and subtropical landmasses, which are being degraded at an alarming rate despite numerous international treaties having been agreed. Iskandar Malaysia (IM) is a fast-growing economic region in southern Peninsular Malaysia, where three Ramsar Sites are located. Since the beginning of the 21st century (2000–2019), a total loss of 2907.29 ha of mangrove area has been estimated based on medium-high resolution remote sensing data. This corresponds to an annual loss rate of 1.12%, which is higher than the world mangrove depletion rate. The causes of mangrove loss were identified as land conversion to urban, plantations, and aquaculture activities, where large mangrove areas were shattered into many smaller patches. Fragmentation analysis over the mangrove area shows a reduction in the mean patch size (from 105 ha to 27 ha) and an increase in the number of mangrove patches (130 to 402), edge, and shape complexity, where smaller and isolated mangrove patches were found to be related to the rapid development of IM region. The Moderate Resolution Imaging Spectro-radiometer (MODIS) Leaf Area Index (LAI) and Gross Primary Productivity (GPP) products were used to inspect the impact of fragmentation on the mangrove ecosystem process. The mean LAI and GPP of mangrove areas that had not undergone any land cover changes over the years showed an increase from 3.03 to 3.55 (LAI) and 5.81 g C m−2 to 6.73 g C m−2 (GPP), highlighting the ability of the mangrove forest to assimilate CO2 when it is not disturbed. Similarly, GPP also increased over the gained areas (from 1.88 g C m−2 to 2.78 g C m−2). Meanwhile, areas that lost mangroves, but replaced them with oil palm, had decreased mean LAI from 2.99 to 2.62. In fragmented mangrove patches an increase in GPP was recorded, and this could be due to the smaller patches (<9 ha) and their edge effects where abundance of solar radiation along the edges of the patches may increase productivity. The impact on GPP due to fragmentation is found to rely on the type of land transformation and patch characteristics (size, edge, and shape complexity). The preservation of mangrove forests in a rapidly developing region such as IM is vital to ensure ecosystem, ecology, environment, and biodiversity conservation, in addition to providing economical revenue and supporting human activities.


Author(s):  
Wen-Ying Wu ◽  
Zong-Liang Yang ◽  
Michael Barlage

AbstractTexas is subject to severe droughts, including the record-breaking one in 2011. To investigate the critical hydrometeorological processes during drought, we use a land surface model, Noah-MP, to simulate water availability and investigate the causes of the record drought. We conduct a series of experiments with runoff schemes, vegetation phenology, and plant rooting depth. Observation-based terrestrial water storage, evapotranspiration, runoff, and leaf area index are used to compare with results from the model. Overall, the results suggest that using different parameterizations can influence the modeled water availability, especially during drought. The drought-induced vegetation responses not only interact with water availability but also affect the ground temperature. Our evaluation shows that Noah-MP with a groundwater scheme produces a better temporal relationship in terrestrial water storage compared with observations. Leaf area index from dynamic vegetation is better simulated in wet years than dry years. Reduction of positive biases in runoff and reduction of negative biases in evapotranspiration are found in simulations with groundwater, dynamic vegetation, and deeper rooting zone depth. Multi-parameterization experiments show the uncertainties of drought monitoring and provide a mechanistic understanding of disparities in dry anomalies.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 120 ◽  
Author(s):  
Georg Röll ◽  
William Batchelor ◽  
Ana Castro ◽  
María Simón ◽  
Simone Graeff-Hönninger

Developing disease models to simulate and analyse yield losses for various pathogens is a challenge for the crop modelling community. In this study, we developed and tested a simple method to simulate septoria tritici blotch (STB) in the Cropsim-CERES Wheat model studying the impacts of damage on wheat (Triticum aestivum L.) yield. A model extension was developed by adding a pest damage module to the existing wheat model. The module simulates the impact of daily damage on photosynthesis and leaf area index. The approach was tested on a two-year dataset from Argentina with different wheat cultivars. The accuracy of the simulated yield and leaf area index (LAI) was improved to a great extent. The Root mean squared error (RMSE) values for yield (1144 kg ha−1) and LAI (1.19 m2 m−2) were reduced by half (499 kg ha−1) for yield and LAI (0.69 m2 m−2). In addition, a sensitivity analysis of different disease progress curves on leaf area index and yield was performed using a dataset from Germany. The sensitivity analysis demonstrated the ability of the model to reduce yield accurately in an exponential relationship with increasing infection levels (0–70%). The extended model is suitable for site specific simulations, coupled with for example, available remote sensing data on STB infection.


2020 ◽  
Vol 15 (3) ◽  
pp. 773-780
Author(s):  
Jinhua Gao ◽  
Yu Bai ◽  
Haifeng Cui ◽  
Yu Zhang

Abstract Runoff and soil erosion are serious environmental issues in farmland management. In a field experiment in Xingmu, China, data from nine plots with different slopes and crops were collected, and the crops' leaf area index (LAI) used to represent the impact of vegetation on runoff and soil erosion. The results show that slope and crop both have significant effects on runoff and soil erosion, and that the LAI can indicate the effects of different crops.


1972 ◽  
Vol 78 (3) ◽  
pp. 509-511 ◽  
Author(s):  
Ian Rhodes

SUMMARYYield, critical LAI and apparent photosynthetic rate per unit leaf area were measured in four families selected from L. perenne S. 321. Differences in yield were attributable to differences in canopy structure producing differing critical LAI. The most productive family, which was 33% more productive than the base population, produced the largest critical LAI but had the lowest photosynthetic rate.


Sign in / Sign up

Export Citation Format

Share Document