scholarly journals Land-atmosphere coupling at the U.S. Southern Great Plains: A comparison on local convective regimes between ARM observations, reanalysis, and climate model simulations

Author(s):  
Cheng Tao ◽  
Yunyan Zhang ◽  
Qi Tang ◽  
Hsi-Yen Ma ◽  
Virendra P. Ghate ◽  
...  

AbstractUsing the 9-yr warm-season observations at the Atmospheric Radiation Measurement Southern Great Plains site, we assess the land-atmosphere (L-A) coupling in North American Regional Reanalysis (NARR) and two climate models: hindcasts with the Community Atmosphere Model version 5.1 by Cloud-Associated Parameterizations Testbed (CAM5-CAPT) and nudged runs with the Energy Exascale Earth System Model Atmosphere Model version 1 Regionally Refined Model (EAMv1-RRM). We focus on three local convective regimes and diagnose model behaviors using the Local Coupling metrics (Santanello et al. 2018). NARR agrees well with observations except a slightly warmer and drier surface with higher downwelling shortwave radiation and lower evaporative fraction. On clear-sky days, it shows warmer and drier early-morning conditions in both models with significant underestimates in surface evaporation by EAMv1-RRM. On the majority of the ARM-observed shallow cumulus days, there is no or little low-level clouds in either model. When captured in models, the simulated shallow cumulus shows much less cloud fraction and lower cloud bases than observed. On the days with late-afternoon deep convection, models tend to present a stable early-morning lower atmosphere more frequently than the observations, suggesting that the deep convection is triggered more often by elevated instabilities. Generally, CAM5-CAPT can reproduce the local L-A coupling processes to some extent due to the constrained early-morning conditions and large-scale winds. EAMv1-RRM exhibits large precipitation deficits and warm and dry biases towards mid-to-late summers, which may be an amplification through a positive L-A feedback among initial atmosphere and land states, convection triggering and large-scale circulations.

2004 ◽  
Vol 5 (6) ◽  
pp. 1223-1246 ◽  
Author(s):  
Christopher P. Weaver

Abstract This paper is Part I of a two-part study that uses high-resolution Regional Atmospheric Modeling System (RAMS) simulations to investigate mesoscale land–atmosphere interactions in the summertime U.S. Southern Great Plains. The focus is on the atmospheric dynamics associated with mesoscale heterogeneity in the underlying surface fluxes: how shifts in meteorological regimes modulate these diurnal, mesoscale processes, and their overall impact at larger scales and over multiple diurnal cycles. Part I examines individual case study time periods drawn from the simulations that illustrate general points about the key land–atmosphere interactions. The main findings are as follows: The mesoscale processes are embedded within a synoptic-scale organization that controls the background meteorological regime at a given location. During the clear, dry days in the simulated months, heterogeneity in the surface fluxes forces strong, lower-tropospheric, mesoscale circulations that exhibit a characteristic dynamical life cycle over diurnal time scales. In general, the background large-scale flow does not affect the overall intensity of these coherent roll structures, though strong large-scale subsidence can sometimes dampen them. In addition, depending on the thermodynamic profile, the strong vertical motions associated with these circulations are sufficient to trigger shallow or even deep convection, with associated clouds and precipitation. Furthermore, surface heterogeneity sufficient to force such circulations can arise even without heterogeneity in preexisting land cover characteristics such as vegetation, for example, solely as a result of spatial variability in rainfall and other atmospheric processes. In Part II the mesoscale land–atmosphere interactions in these case study periods are placed in the larger context of the full, monthlong simulations.


2017 ◽  
Vol 74 (10) ◽  
pp. 3229-3251 ◽  
Author(s):  
Yunyan Zhang ◽  
Stephen A. Klein ◽  
Jiwen Fan ◽  
Arunchandra S. Chandra ◽  
Pavlos Kollias ◽  
...  

Abstract Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime nonprecipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land surface forcing and are not influenced by synoptic weather events. The case includes early morning initial profiles of temperature and moisture with a residual layer; diurnally varying sensible and latent heat fluxes, which represent a domain average over different land surface types; simplified large-scale horizontal advective tendencies and subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well reproduced by LES; however, the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 m. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity, and updraft mass flux. Both observations and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.


2021 ◽  
Vol 13 (12) ◽  
pp. 2309
Author(s):  
Jingjing Tian ◽  
Yunyan Zhang ◽  
Stephen A. Klein ◽  
Likun Wang ◽  
Rusen Öktem ◽  
...  

Summertime continental shallow cumulus clouds (ShCu) are detected using Geostationary Operational Environmental Satellite (GOES)-16 reflectance data, with cross-validation by observations from ground-based stereo cameras at the Department of Energy Atmospheric Radiation Measurement Southern Great Plains site. A ShCu cloudy pixel is identified when the GOES reflectance exceeds the clear-sky surface reflectance by a reflectance detection threshold of ShCu, ΔR. We firstly construct diurnally varying clear-sky surface reflectance maps and then estimate the ∆R. A GOES simulator is designed, projecting the clouds reconstructed by stereo cameras towards the surface along the satellite’s slanted viewing direction. The dynamic ShCu detection threshold ΔR is determined by making the GOES cloud fraction (CF) equal to the CF from the GOES simulator. Although there are temporal variabilities in ΔR, cloud fractions and cloud size distributions can be well reproduced using a constant ΔR value of 0.045. The method presented in this study enables daytime ShCu detection, which is usually falsely reported as clear sky in the GOES-16 cloud mask data product. Using this method, a new ShCu dataset can be generated to bridge the observational gap in detecting ShCu, which may transition into deep precipitating clouds, and to facilitate further studies on ShCu development over heterogenous land surface.


2004 ◽  
Vol 5 (6) ◽  
pp. 1247-1258 ◽  
Author(s):  
Christopher P. Weaver

Abstract This is Part II of a two-part study of mesoscale land–atmosphere interactions in the summertime U.S. Southern Great Plains. Part I focused on case studies drawn from monthlong (July 1995–97), high-resolution Regional Atmospheric Modeling System (RAMS) simulations carried out to investigate these interactions. These case studies were chosen to highlight key features of the lower-tropospheric mesoscale circulations that frequently arise in this region and season due to mesoscale heterogeneity in the surface fluxes. In this paper, Part II, the RAMS-simulated mesoscale dynamical processes described in the Part I case studies are examined from a domain-averaged perspective to assess their importance in the overall regional hydrometeorology. The spatial statistics of key simulated mesoscale variables—for example, vertical velocity and the vertical flux of water vapor—are quantified here. Composite averages of the mesoscale and large-scale-mean variables over different meteorological or dynamical regimes are also calculated. The main finding is that, during dry periods, or similarly, during periods characterized by large-scale-mean subsidence, the characteristic signature of surface-heterogeneity-forced mesoscale circulations, including enhanced vertical motion variability and enhanced mesoscale fluxes in the lowest few kilometers of the atmosphere, consistently emerges. Furthermore, the impact of these mesoscale circulations is nonnegligible compared to the large-scale dynamics at domain-averaged (200 km × 200 km) spatial scales and weekly to monthly time scales. These findings support the hypothesis that the land– atmosphere interactions associated with mesoscale surface heterogeneity can provide pathways whereby diurnal, mesoscale atmospheric processes can scale up to have more general impacts at larger spatial scales and over longer time scales.


2018 ◽  
Vol 75 (7) ◽  
pp. 2235-2255 ◽  
Author(s):  
Neil P. Lareau ◽  
Yunyan Zhang ◽  
Stephen A. Klein

Abstract The boundary layer controls on shallow cumulus (ShCu) convection are examined using a suite of remote and in situ sensors at ARM Southern Great Plains (SGP). A key instrument in the study is a Doppler lidar that measures vertical velocity in the CBL and along cloud base. Using a sample of 138 ShCu days, the composite structure of the ShCu CBL is examined, revealing increased vertical velocity (VV) variance during periods of medium cloud cover and higher VV skewness on ShCu days than on clear-sky days. The subcloud circulations of 1791 individual cumuli are also examined. From these data, we show that cloud-base updrafts, normalized by convective velocity, vary as a function of updraft width normalized by CBL depth. It is also found that 63% of clouds have positive cloud-base mass flux and are linked to coherent updrafts extending over the depth of the CBL. In contrast, negative mass flux clouds lack coherent subcloud updrafts. Both sets of clouds possess narrow downdrafts extending from the cloud edges into the subcloud layer. These downdrafts are also present adjacent to cloud-free updrafts, suggesting they are mechanical in origin. The cloud-base updraft data are subsequently combined with observations of convective inhibition to form dimensionless “cloud inhibition” (CI) parameters. Updraft fraction and liquid water path are shown to vary inversely with CI, a finding consistent with CIN-based closures used in convective parameterizations. However, we also demonstrate a limited link between CBL vertical velocity variance and cloud-base updrafts, suggesting that additional factors, including updraft width, are necessary predictors for cloud-base updrafts.


2017 ◽  
Vol 145 (10) ◽  
pp. 3929-3946 ◽  
Author(s):  
Kevin R. Haghi ◽  
David B. Parsons ◽  
Alan Shapiro

This study documents atmospheric bores and other convergent boundaries in the southern Great Plains’ nocturnal environment during the IHOP_2002 summer campaign. Observational evidence demonstrates that convective outflows routinely generate bores. Statistically resampled flow regimes, derived from an adaptation of hydraulic theory, agree well with observations. Specifically, convective outflows within the observed environments are likely to produce a partially blocked flow regime, which is a favorable condition for generating a bore. Once a bore develops, the direction of movement generally follows the orientation of the bulk shear vector between the nose of the nocturnal low-level jet and a height of 1.5 or 2.5 km AGL. This relationship is believed to be a consequence of wave trapping through the curvature of the horizontal wind with respect to height. This conclusion comes after analyzing the profile of the Scorer parameter. Overall, these findings provide an impetus for future investigations aimed at understanding and predicting nocturnal deep convection over this region.


2013 ◽  
Vol 26 (2) ◽  
pp. 426-449 ◽  
Author(s):  
James J. Benedict ◽  
Eric D. Maloney ◽  
Adam H. Sobel ◽  
Dargan M. Frierson ◽  
Leo J. Donner

Abstract Tropical intraseasonal variability is examined in version 3 of the Geophysical Fluid Dynamics Laboratory Atmosphere Model (AM3). In contrast to its predecessor AM2, AM3 uses a new treatment of deep and shallow cumulus convection and mesoscale clouds. The AM3 cumulus parameterization is a mass-flux-based scheme but also, unlike that in AM2, incorporates subgrid-scale vertical velocities; these play a key role in cumulus microphysical processes. The AM3 convection scheme allows multiphase water substance produced in deep cumuli to be transported directly into mesoscale clouds, which strongly influence large-scale moisture and radiation fields. The authors examine four AM3 simulations using a control model and three versions with different modifications to the deep convection scheme. In the control AM3, using a convective closure based on CAPE relaxation, both MJO and Kelvin waves are weak relative to those in observations. By modifying the convective closure and trigger assumptions to inhibit deep cumuli, AM3 produces reasonable intraseasonal variability but a degraded mean state. MJO-like disturbances in the modified AM3 propagate eastward at roughly the observed speed in the Indian Ocean but up to 2 times the observed speed in the west Pacific Ocean. Distinct differences in intraseasonal convective organization and propagation exist among the modified AM3 versions. Differences in vertical diabatic heating profiles associated with the MJO are also found. The two AM3 versions with the strongest intraseasonal signals have a more prominent “bottom heavy” heating profile leading the disturbance center and “top heavy” heating profile following the disturbance. The more realistic heating structures are associated with an improved depiction of moisture convergence and intraseasonal convective organization in AM3.


Sign in / Sign up

Export Citation Format

Share Document