scholarly journals Large-Eddy Simulation of Shallow Cumulus over Land: A Composite Case Based on ARM Long-Term Observations at Its Southern Great Plains Site

2017 ◽  
Vol 74 (10) ◽  
pp. 3229-3251 ◽  
Author(s):  
Yunyan Zhang ◽  
Stephen A. Klein ◽  
Jiwen Fan ◽  
Arunchandra S. Chandra ◽  
Pavlos Kollias ◽  
...  

Abstract Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime nonprecipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land surface forcing and are not influenced by synoptic weather events. The case includes early morning initial profiles of temperature and moisture with a residual layer; diurnally varying sensible and latent heat fluxes, which represent a domain average over different land surface types; simplified large-scale horizontal advective tendencies and subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well reproduced by LES; however, the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 m. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity, and updraft mass flux. Both observations and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.

2021 ◽  
Vol 13 (12) ◽  
pp. 2309
Author(s):  
Jingjing Tian ◽  
Yunyan Zhang ◽  
Stephen A. Klein ◽  
Likun Wang ◽  
Rusen Öktem ◽  
...  

Summertime continental shallow cumulus clouds (ShCu) are detected using Geostationary Operational Environmental Satellite (GOES)-16 reflectance data, with cross-validation by observations from ground-based stereo cameras at the Department of Energy Atmospheric Radiation Measurement Southern Great Plains site. A ShCu cloudy pixel is identified when the GOES reflectance exceeds the clear-sky surface reflectance by a reflectance detection threshold of ShCu, ΔR. We firstly construct diurnally varying clear-sky surface reflectance maps and then estimate the ∆R. A GOES simulator is designed, projecting the clouds reconstructed by stereo cameras towards the surface along the satellite’s slanted viewing direction. The dynamic ShCu detection threshold ΔR is determined by making the GOES cloud fraction (CF) equal to the CF from the GOES simulator. Although there are temporal variabilities in ΔR, cloud fractions and cloud size distributions can be well reproduced using a constant ΔR value of 0.045. The method presented in this study enables daytime ShCu detection, which is usually falsely reported as clear sky in the GOES-16 cloud mask data product. Using this method, a new ShCu dataset can be generated to bridge the observational gap in detecting ShCu, which may transition into deep precipitating clouds, and to facilitate further studies on ShCu development over heterogenous land surface.


2018 ◽  
Vol 75 (7) ◽  
pp. 2235-2255 ◽  
Author(s):  
Neil P. Lareau ◽  
Yunyan Zhang ◽  
Stephen A. Klein

Abstract The boundary layer controls on shallow cumulus (ShCu) convection are examined using a suite of remote and in situ sensors at ARM Southern Great Plains (SGP). A key instrument in the study is a Doppler lidar that measures vertical velocity in the CBL and along cloud base. Using a sample of 138 ShCu days, the composite structure of the ShCu CBL is examined, revealing increased vertical velocity (VV) variance during periods of medium cloud cover and higher VV skewness on ShCu days than on clear-sky days. The subcloud circulations of 1791 individual cumuli are also examined. From these data, we show that cloud-base updrafts, normalized by convective velocity, vary as a function of updraft width normalized by CBL depth. It is also found that 63% of clouds have positive cloud-base mass flux and are linked to coherent updrafts extending over the depth of the CBL. In contrast, negative mass flux clouds lack coherent subcloud updrafts. Both sets of clouds possess narrow downdrafts extending from the cloud edges into the subcloud layer. These downdrafts are also present adjacent to cloud-free updrafts, suggesting they are mechanical in origin. The cloud-base updraft data are subsequently combined with observations of convective inhibition to form dimensionless “cloud inhibition” (CI) parameters. Updraft fraction and liquid water path are shown to vary inversely with CI, a finding consistent with CIN-based closures used in convective parameterizations. However, we also demonstrate a limited link between CBL vertical velocity variance and cloud-base updrafts, suggesting that additional factors, including updraft width, are necessary predictors for cloud-base updrafts.


2012 ◽  
Vol 13 (6) ◽  
pp. 1719-1738 ◽  
Author(s):  
Peter J. Lamb ◽  
Diane H. Portis ◽  
Abraham Zangvil

Abstract The atmospheric moisture budget and surface interactions for the southern Great Plains are evaluated for contrasting May–June periods (1998, 2002, 2006, and 2007) as background for the Cloud and Land Surface Interaction Campaign (CLASIC) of (wet) 7–30 June 2007. Budget components [flux divergence (MFD), storage change (dPW), and inflow (IF/A)] are estimated from North American Regional Reanalysis data. Precipitation (P) is calculated from NCEP daily gridded data, evapotranspiration (E) is obtained as moisture budget equation residual, and the recycling ratio (PE/P) is estimated using a new equation. Regional averages are presented for months and five daily P categories. Monthly budget results show that E and E − P are strongly positively related to P; E − P generally is positive and balanced by positive MFD that results from its horizontal velocity divergence component (HD, positive) exceeding its horizontal advection component (HA, negative). An exception is 2007 (CLASIC), when E − P and MFD are negative and supported primarily by negative HA. These overall monthly results characterize low P days (≤0.6 mm), including for nonanomalous 2007, but weaken as daily P approaches 4 mm. In contrast, for 4 < P ≤ 8 mm day−1 E − P and MFD are moderately negative and balanced largely by negative HD except in 2007 (negative HA). This overall pattern was accentuated (including for nonanomalous 2007) when daily P > 8 mm. Daily PE/P ratios are small and of limited range, with P category averages 0.15–0.19. Ratios for 2007 are above average only for daily P ≤ 4 mm. CLASIC wetness principally resulted from distinctive MFD characteristics. Solar radiation, soil moisture, and crop status/yield information document surface interactions.


Author(s):  
Cheng Tao ◽  
Yunyan Zhang ◽  
Qi Tang ◽  
Hsi-Yen Ma ◽  
Virendra P. Ghate ◽  
...  

AbstractUsing the 9-yr warm-season observations at the Atmospheric Radiation Measurement Southern Great Plains site, we assess the land-atmosphere (L-A) coupling in North American Regional Reanalysis (NARR) and two climate models: hindcasts with the Community Atmosphere Model version 5.1 by Cloud-Associated Parameterizations Testbed (CAM5-CAPT) and nudged runs with the Energy Exascale Earth System Model Atmosphere Model version 1 Regionally Refined Model (EAMv1-RRM). We focus on three local convective regimes and diagnose model behaviors using the Local Coupling metrics (Santanello et al. 2018). NARR agrees well with observations except a slightly warmer and drier surface with higher downwelling shortwave radiation and lower evaporative fraction. On clear-sky days, it shows warmer and drier early-morning conditions in both models with significant underestimates in surface evaporation by EAMv1-RRM. On the majority of the ARM-observed shallow cumulus days, there is no or little low-level clouds in either model. When captured in models, the simulated shallow cumulus shows much less cloud fraction and lower cloud bases than observed. On the days with late-afternoon deep convection, models tend to present a stable early-morning lower atmosphere more frequently than the observations, suggesting that the deep convection is triggered more often by elevated instabilities. Generally, CAM5-CAPT can reproduce the local L-A coupling processes to some extent due to the constrained early-morning conditions and large-scale winds. EAMv1-RRM exhibits large precipitation deficits and warm and dry biases towards mid-to-late summers, which may be an amplification through a positive L-A feedback among initial atmosphere and land states, convection triggering and large-scale circulations.


2018 ◽  
Vol 146 (12) ◽  
pp. 4303-4322 ◽  
Author(s):  
Wayne M. Angevine ◽  
Joseph Olson ◽  
Jaymes Kenyon ◽  
William I. Gustafson ◽  
Satoshi Endo ◽  
...  

AbstractRepresentation of shallow cumulus is a challenge for mesoscale numerical weather prediction models. These cloud fields have important effects on temperature, solar irradiance, convective initiation, and pollutant transport, among other processes. Recent improvements to physics schemes available in the Weather Research and Forecasting (WRF) Model aim to improve representation of shallow cumulus, in particular over land. The DOE LES ARM Symbiotic Simulation and Observation Workflow (LASSO) project provides several cases that we use here to test the new physics improvements. The LASSO cases use multiple large-scale forcings to drive large-eddy simulations (LES), and the LES output is easily compared to output from WRF single-column simulations driven with the same initial conditions and forcings. The new Mellor–Yamada–Nakanishi–Niino (MYNN) eddy diffusivity mass-flux (EDMF) boundary layer and shallow cloud scheme produces clouds with timing, liquid water path (LWP), and cloud fraction that agree well with LES over a wide range of those variables. Here we examine those variables and test the scheme’s sensitivity to perturbations of a few key parameters. We also discuss the challenges and uncertainties of single-column tests. The older, simpler total energy mass-flux (TEMF) scheme is included for comparison, and its tuning is improved. This is the first published use of the LASSO cases for parameterization development, and the first published study to use such a large number of cases with varying cloud amount. This is also the first study to use a more precise combined infrared and microwave retrieval of LWP to evaluate modeled clouds.


Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Lahouari Bounoua ◽  
Kurtis Thome ◽  
Joseph Nigro

Urbanization is a complex land transformation not explicitly resolved within large-scale climate models. Long-term timeseries of high-resolution satellite data are essential to characterize urbanization within land surface models and to assess its contribution to surface temperature changes. The potential for additional surface warming from urbanization-induced land use change is investigated and decoupled from that due to change in climate over the continental US using a decadal timescale. We show that, aggregated over the US, the summer mean urban-induced surface temperature increased by 0.15 °C, with a warming of 0.24 °C in cities built in vegetated areas and a cooling of 0.25 °C in cities built in non-vegetated arid areas. This temperature change is comparable in magnitude to the 0.13 °C/decade global warming trend observed over the last 50 years caused by increased CO2. We also show that the effect of urban-induced change on surface temperature is felt above and beyond that of the CO2 effect. Our results suggest that climate mitigation policies must consider urbanization feedback to put a limit on the worldwide mean temperature increase.


2004 ◽  
Vol 5 (6) ◽  
pp. 1247-1258 ◽  
Author(s):  
Christopher P. Weaver

Abstract This is Part II of a two-part study of mesoscale land–atmosphere interactions in the summertime U.S. Southern Great Plains. Part I focused on case studies drawn from monthlong (July 1995–97), high-resolution Regional Atmospheric Modeling System (RAMS) simulations carried out to investigate these interactions. These case studies were chosen to highlight key features of the lower-tropospheric mesoscale circulations that frequently arise in this region and season due to mesoscale heterogeneity in the surface fluxes. In this paper, Part II, the RAMS-simulated mesoscale dynamical processes described in the Part I case studies are examined from a domain-averaged perspective to assess their importance in the overall regional hydrometeorology. The spatial statistics of key simulated mesoscale variables—for example, vertical velocity and the vertical flux of water vapor—are quantified here. Composite averages of the mesoscale and large-scale-mean variables over different meteorological or dynamical regimes are also calculated. The main finding is that, during dry periods, or similarly, during periods characterized by large-scale-mean subsidence, the characteristic signature of surface-heterogeneity-forced mesoscale circulations, including enhanced vertical motion variability and enhanced mesoscale fluxes in the lowest few kilometers of the atmosphere, consistently emerges. Furthermore, the impact of these mesoscale circulations is nonnegligible compared to the large-scale dynamics at domain-averaged (200 km × 200 km) spatial scales and weekly to monthly time scales. These findings support the hypothesis that the land– atmosphere interactions associated with mesoscale surface heterogeneity can provide pathways whereby diurnal, mesoscale atmospheric processes can scale up to have more general impacts at larger spatial scales and over longer time scales.


Author(s):  
W. E. Li ◽  
X. Q. Wang ◽  
H. Su

Land surface temperature (LST) is a key parameter of land surface physical processes on global and regional scales, linking the heat fluxes and interactions between the ground and atmosphere. Based on MODIS 8-day LST products (MOD11A2) from the split-window algorithms, we constructed and obtained the monthly and annual LST dataset of Fujian Province from 2000 to 2015. Then, we analyzed the monthly and yearly time series LST data and further investigated the LST distribution and its evolution features. The average LST of Fujian Province reached the highest in July, while the lowest in January. The monthly and annual LST time series present a significantly periodic features (annual and interannual) from 2000 to 2015. The spatial distribution showed that the LST in North and West was lower than South and East in Fujian Province. With the rapid development and urbanization of the coastal area in Fujian Province, the LST in coastal urban region was significantly higher than that in mountainous rural region. The LST distributions might affected by the climate, topography and land cover types. The spatio-temporal distribution characteristics of LST could provide good references for the agricultural layout and environment monitoring in Fujian Province.


Sign in / Sign up

Export Citation Format

Share Document