scholarly journals Does HadGEM3-GC3.1 GCM overestimate land precipitation at high resolution? A constraint based on observed river discharge

Author(s):  
Omar V. Müller ◽  
Pier Luigi Vidale ◽  
Benoît Vannière ◽  
Reinhard Schiemann ◽  
Patrick C. McGuire

AbstractPrevious studies showed that high-resolution GCMs overestimate land precipitation when compared against observation-based data. Particularly, high-resolution HadGEM3-GC3.1 shows a significant precipitation increase in mountainous regions, where the scarcity of gauge stations increases the uncertainty of gridded observations and reanalyses. This work evaluates such precipitation uncertainties indirectly through the assessment of river discharge, considering that an increase of ~10% in land precipitation produces ~28% more runoff when the resolution is enhanced from 1° to 0.25°, and ~50% of the global runoff is produced in 27% of global land dominated by mountains. We diagnosed the river flow by routing the runoff generated by HadGEM3-GC3.1 low- and high-resolution simulations. The river flow is evaluated using a set of 344 monitored catchments distributed around the world. We also infer the global discharge by constraining the simulations with observations following a novel approach that implies bias correction in monitored rivers with two methods, and extension of the correction to the river mouth, and along the coast. Our global discharge estimate is 47.4±1.6×103km3yr−1, which is closer to the original high-resolution estimate (50.5 × 103km3yr−1) than to the low-resolution (39.6 × 103km3yr−1). The assessment suggests that high-resolution simulations performbetter in mountainous regions, either because the better-defined orography favours the placement of precipitation in the correct catchment, leading to a more accurate distribution of runoff, or the orographic precipitation increases, reducing the dry runoff bias of coarse resolution simulations. However, high-resolution slightly increases wet biases in catchments dominated by flat terrain. The improvement of model parameterizations and tuning may reduce the remaining errors in high-resolution simulations.

2020 ◽  
Author(s):  
Stefan Hagemann ◽  
Tobias Stacke

<p>The 0.5° resolution of many global observational datasets is not sufficient for the requirements of current state-of-the-art regional climate model (RCM) simulations over Europe. Here, the ERA5 reanalysis of the ECMWF (C3S 2017) and E-OBS data (Cornes et al. 2018) are frequently used as reference datasets when RCM results are evaluated on resolutions higher than 0.5°. In addition, ERA5 data are also commonly used to force regional ocean models. As ERA data do not comprise river discharges, the lateral forcing of freshwater inflow from land is taken from other data sources, such as station data, runoff climatologies, etc. However, these data are not necessarily consistent with the ERA5 forcing over the ocean surface. If such data are derived from station data, they are only available for specific rivers and not spatially homogeneously distributed for all coastal areas. In addition, they might not be representative for the river mouth if the respective station location is too far away from the river mouth, which is often the case.</p><p>In order to allow a consistent forcing of river discharges and evaluation of simulated hydrological fluxes, we extended ERA5 and E-OBS v20.0e with high resolution river discharge. This also allows a consistent assessment of hydrological changes from these two datasets. The discharge was simulated with the recently developed 5 Min. version of the Hydrological discharge (HD) model (Hagemann et al., submitted). Note that for the development of this HD model version, no river specific parameter adjustments were conducted so that the HD model is generally applicable for climate change studies and over ungauged catchments.</p><p>The HD model requires gridded fields of surface and subsurface runoff as input with a daily temporal resolution or higher. As no large-scale observations of these variables exist, they need to be calculated by a land surface scheme or hydrology model using observed or re-analyzed meteorological data. Here, we used the HydroPy global hydrological model, which is the successor of the MPI-HM model (Stacke and Hagemann 2012). The latter has contributed to the WATCH Water Model Intercomparison Project (WaterMIP; Haddeland et al. 2011) and the inter-sectoral impact model intercomparison project (ISIMIP; Warszawski et al. 2014). Note that ERA5 also comprises archived fields of surface and subsurface runoff, but it turned out that its separation of total runoff is not suitable to generate adequate river discharges with the HD model. In our presentation, we evaluate the simulated discharge using various metrics and consider significant discharge trends over Europe.</p><p><strong>References</strong></p><p>C3S (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS)</p><p>Cornes, R., et al. (2018) J. Geophys. Res. Atmos. 123, doi:10.1029/2017JD028200</p><p>Haddeland, I., et al. (2011). J. Hydrometeorol. 12, doi: 10.1175/2011jhm1324.1</p><p>Hagemann, S., T. Stacke and H. Ho-Hagemann, High resolution discharge simulations over Europe and the Baltic Sea catchment. Frontiers in Earth Sci., submitted.</p><p>Stacke, T. and Hagemann, S. (2012). Hydrol. Earth Syst. Sci. 16, doi: 10.5194/hess-16-2915-2012</p><p>Warszawski, L., et al. (2014) Proc. Natl. Acad. Sci. USA 111, doi: 10.1073/pnas.1312330110</p>


2021 ◽  
Author(s):  
Xinyue He ◽  
Zhenzhong Zeng ◽  
Dominick Spracklen ◽  
Joseph Holden ◽  
Alan D. Ziegler

<p>Mountain forests, widely distributed around the world, are hotspots of biodiversity and provide important environmental services by conserving water and soil, regulating river flow and storing carbon. The upper altitudinal limits of trees is defined as the treeline. Some field investigations indicate that treelines around the world are moving upward as a response to global climate change. However, to date, a high-resolution spatial map of global mountain treeline position is still lacking. In this study, we develop an algorithm to detect the present-day tree line positions in mountain regions globally, via integrating a high-resolution tree distribution dataset with a high-resolution digital elevation model. The results are validated with even finer resolution remote sensing images in Google Earth. We analyse a range of climate datasets to understand important climate drivers of the present-day tree line position. Further, we explore the change in Normalized Difference Vegetation Index (NDVI) within the buffer zone of the treeline to determine how the treeline position has shifted in the last three decades. By providing the first global mountain treeline distribution, our analysis will help to reveal how mountain forests are responding to climate change globally, and to detect how the responses vary regionally.</p>


2021 ◽  
Vol 930 (1) ◽  
pp. 012027
Author(s):  
T E Bhakty ◽  
A H Swasono ◽  
N Yuwono ◽  
A F Ghalizhan ◽  
T Widyasari

Abstract One of the problems around estuaries with the wave-dominated combination of a small tidal range and low river discharges in the dry season was the mouth closed by a sand barrier. Longshore sediment flows silted up the river mouth while river flows were insufficiently large for flushing sand barriers. When the wet season started, river discharge suddenly enlarged. Discharge can’t flow through the river mouth due to being hindered by the sand barrier. The consequence was that the hinterlands were inundated. Yogyakarta International Airport (YIA) is located in a coastal area of Kulon Progo regency, between two river mouths (Bogowonto river and Serang River). The two rivers have unstable river mouths. The double Jetty had been built at the Bogowonto river, but its condition was damaged. Meanwhile, the breakwater was constructed at the river mouth Serang and called Tanjung Adikarto. Double Jetties will be built to stabilize the Bogowonto river mouth. The purpose of this paper is to provide an overview of the length of the Jetty to be more effective in stabilizing the Bogowonto river mouth. Therefore, so that more easily opened by river flow and does not cause excessive erosion on the one side of the Jetty.


2019 ◽  
Vol 872 ◽  
pp. 39-73 ◽  
Author(s):  
K. Kästner ◽  
A. J. F. Hoitink ◽  
P. J. J. F. Torfs ◽  
E. Deleersnijder ◽  
N. S. Ningsih

Conceptually, tidal rivers are seen as narrow channels along which the cross-section geometry remains constant and the bed is horizontal. As tidal waves propagate along such a channel, they decrease exponentially in height. The more rapid the decrease, the stronger the river flow. Near the coast, the tidally averaged width and depth change little throughout the year, even if the river discharge varies strongly between the seasons. However, further upstream, the water depth varies considerably with the river discharge. Recent observations from the Kapuas River, Indonesia, show that the water surface forms a backwater profile when the river flow is low. In this case, the depth converges, i.e. it gradually decreases between the river mouth and the point where the bed reaches sea level. This effect distinctly influences how tidal waves propagate up river so that their wave height does not decrease exponentially any more. We present a theoretical analysis of this phenomenon, which reveals several so far overlooked aspects of river tides. These aspects are particularly relevant to low river flow. Along the downstream part of the tidal river, depth convergence counteracts frictional damping so that the tidal range is higher than expected. Along the upstream parts of the tidal river, the low depth increases the damping so that the tide more rapidly attenuates. The point where the bed reaches sea level effectively limits the tidal intrusion, which carries over to the overtide and the subtidal water level set-up.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2382
Author(s):  
Bárbara M. Jung ◽  
Elisa H. Fernandes ◽  
Osmar O. Möller ◽  
Felipe García-Rodríguez

Suspended sediment rating-curves are low cost and reliable tools used all around the world to estimate river suspended sediment concentrations (SSC) based on either linear or non-linear regression with a second variable, such as the river discharge. The aim of this paper is to undertake an evaluation of four different suspended sediment rating-curves for three turbid large river tributaries flowing into the largest choked coastal lagoon of the world, a very turbid system. Statistical parameters such as Nash–Sutcliffe efficiency coefficient (NSE), percent of bias (PBIAS) and a standardized root-mean-square error (RMSE), referred to as RSR (RMSE-observations standard deviation ratio) were used to calibrate and validate the suspended sediment rating-curves. Results indicated that for all tributaries, the non-linear approach yielded the best correlations and proved to be an effective tool to estimate the SSC from river flow data. The tested curves show low bias and high accuracy for monthly resolution. However, for higher temporal resolution, and therefore variability, an ad hoc data acquisition to capture extreme rating-curve values is required to reliably fill gaps of information for both performing modeling approaches and setting monitoring efforts for long-term variability studies.


2017 ◽  
Author(s):  
Gabin Archambault

This 5 km resolution grid presents groundwater storage in Africa (in mm). This parameter was estimated by combining the saturated aquifer thickness and effective porosity of aquifers across Africa. For each aquifer flow/storage type an effective porosity range was assigned based on a series of studies across Africa and surrogates in other parts of the world. Groundwater storage is given in millimeters. Detailed description of the methodology, and a full list of data sources used to develop the layer can be found in the peer-reviewed paper available here: http://iopscience.iop.org/article/10.1088/1748-9326/7/2/024009/pdf The raster and a high resolution PDF file are available for download on the website of British Geological Survey (BGS): http://www.bgs.ac.uk/research/groundwater/international/africanGroundwater/mapsDownload.html Groundwater Storage


Author(s):  
Matheus Souisa ◽  
Paulus R. Atihuta ◽  
Josephus R. Kelibulin

Ambon City is a region consisting of hilly areas and steep slopes with diverse river characteristics. Research has been carried out in the Wae Ruhu watershed in Ambon City which starts from upstream (water catchment) to downstream. This study aims to determine the magnitude of river discharge and sediment discharge in the Wae Ruhu watershed. This research was conducted in several stages including, secondary data collection, research location survey, preparation of research tools and materials as well as field data retrieval processes which included tracking coordinates at each station point and entire watershed, calculation of river flow velocity, river geometry measurements, and sampling sediment. The results showed that the average river discharge in the Wae watershed in the year 2018 was 1.24 m3 / s, and the average sediment discharge was 6.27 kg / s. From the results of this study and the field observations proposed for flood prevention and the rate of sediment movement are the construction of cliffs with sheet pile and gabions.


Author(s):  
Abdallah Naser ◽  
Ahmad Lotfi ◽  
Joni Zhong

AbstractHuman distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. Previous approaches to estimate the distance between a reference sensing device and human subject relied on visual or high-resolution thermal cameras. However, regular visual cameras have serious concerns about people’s privacy in indoor environments, and high-resolution thermal cameras are costly. This paper proposes a novel approach to estimate the distance for indoor human-centred applications using a low-resolution thermal sensor array. The proposed system presents a discrete and adaptive sensor placement continuous distance estimators using classification techniques and artificial neural network, respectively. It also proposes a real-time distance-based field of view classification through a novel image-based feature. Besides, the paper proposes a transfer application to the proposed continuous distance estimator to measure human height. The proposed approach is evaluated in different indoor environments, sensor placements with different participants. This paper shows a median overall error of $$\pm 0.2$$ ± 0.2  m in continuous-based estimation and $$96.8\%$$ 96.8 % achieved-accuracy in discrete distance estimation.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Pyrrhon Amathes ◽  
Paul Christodoulides

Photography can be used for pleasure and art but can also be used in many disciplines of science, because it captures the details of the moment and can serve as a proving tool due to the information it preserves. During the period of the Apollo program (1969 to 1972), the National Aeronautics and Space Administration (NASA) successfully landed humans on the Moon and showed hundreds of photos to the world presenting the travel and landings. This paper uses computer simulations and geometry to examine the authenticity of one such photo, namely Apollo 17 photo GPN-2000-00113. In addition, a novel approach is employed by creating an experimental scene to illustrate details and provide measurements. The crucial factors on which the geometrical analysis relies are locked in the photograph and are: (a) the apparent position of the Earth relative to the illustrated flag and (b) the point to which the shadow of the astronaut taking the photo reaches, in relation to the flagpole. The analysis and experimental data show geometrical and time mismatches, proving that the photo is a composite.


2014 ◽  
Vol 15 (4) ◽  
pp. 1517-1531 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann ◽  
Andreas Heckl

Abstract The impact of climate change on the future water availability of the upper Jordan River (UJR) and its tributaries Dan, Snir, and Hermon located in the eastern Mediterranean is evaluated by a highly resolved distributed approach with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) run at 18.6- and 6.2-km resolution offline coupled with the Water Flow and Balance Simulation Model (WaSiM). The MM5 was driven with NCEP reanalysis for 1971–2000 and with Hadley Centre Coupled Model, version 3 (HadCM3), GCM forcings for 1971–2099. Because only one regional–global climate model combination was applied, the results may not give the full range of possible future projections. To describe the Dan spring behavior, the hydrological model was extended by a bypass approach to allow the fast discharge components of the Snir to enter the Dan catchment. Simulation results for the period 1976–2000 reveal that the coupled system was able to reproduce the observed discharge rates in the partially karstic complex terrain to a reasonable extent with the high-resolution 6.2-km meteorological input only. The performed future climate simulations show steadily rising temperatures with 2.2 K above the 1976–2000 mean for the period 2031–60 and 3.5 K for the period 2070–99. Precipitation trends are insignificant until the middle of the century, although a decrease of approximately 12% is simulated. For the end of the century, a reduction in rainfall ranging between 10% and 35% can be expected. Discharge in the UJR is simulated to decrease by 12% until 2060 and by 26% until 2099, both related to the 1976–2000 mean. The discharge decrease is associated with a lower number of high river flow years.


Sign in / Sign up

Export Citation Format

Share Document