scholarly journals The Radiative Effect of a Fir Canopy on a Snowpack

2006 ◽  
Vol 7 (5) ◽  
pp. 880-895 ◽  
Author(s):  
M. J. Tribbeck ◽  
R. J. Gurney ◽  
E. M. Morris

Abstract Models of snow processes in areas of possible large-scale change need to be site independent and physically based. Here, the accumulation and ablation of the seasonal snow cover beneath a fir canopy has been simulated with a new physically based snow–soil vegetation–atmosphere transfer scheme (Snow-SVAT) called SNOWCAN. The model was formulated by coupling a canopy optical and thermal radiation model to a physically based multilayer snow model. Simple representations of other forest effects were included. These include the reduction of wind speed and hence turbulent transfer beneath the canopy, sublimation of intercepted snow, and deposition of debris on the surface. This paper tests this new modeling approach fully at a fir site within Reynolds Creek Experimental Watershed, Idaho. Model parameters were determined at an open site and subsequently applied to the fir site. SNOWCAN was evaluated using measurements of snow depth, subcanopy solar and thermal radiation, and snowpack profiles of temperature, density, and grain size. Simulations showed good agreement with observations (e.g., fir site snow depth was estimated over the season with r 2 = 0.96), generally to within measurement error. However, the simulated temperature profiles were less accurate after a melt–freeze event, when the temperature discrepancy resulted from underestimation of the rate of liquid water flow and/or the rate of refreeze. This indicates both that the general modeling approach is applicable and that a still more complete representation of liquid water in the snowpack will be important.

2001 ◽  
Vol 32 ◽  
pp. 109-115 ◽  
Author(s):  
Christophe Genthon ◽  
Michel Fily ◽  
Eric Martin

AbstractIn this paper, we show that a detailed snow model (here, the Crocus model) may help to validate large-scale inferred meteorological datasets (e.g. from climate models or analyses) over the data-sparse ice sheets. Two series of snow simulations are carried out with two different meteorological datasets in input to the snow model. Both datasets are extracted from the European Center for Medium-range Weather Forecasts meteorological analyses and forecast archives. First, the microwave signatures of the surface of central Greenland from the Scanning Multichannel Microwave Radiometer (SMMR) are compared with the simulated density, grain-size and stratigraphy. The annual mean gradient ratio and polarization ratio, which are related to the emissivity of snow, are found to correlate spatially with these snow structural parameters. The sensitivity of the snow structure to differences in the two meteorological sets is then examined. It is found to be high for temperature and infrared radiation, precipitation and surface wind. The quantitative value of this result is limited by a still limited snow model validation over Greenland. Also, an optimal use of satellite data and a snow model for meteorological validation would require physically based translation of the simulated snow parameters into radiative properties, i. e radiation transfer modeling.


2019 ◽  
Author(s):  
Abbas Fayad ◽  
Simon Gascoin

Abstract. In many Mediterranean mountain regions, the seasonal snowpack is an essential yet poorly known water resource. Here, we examine, for the first time, the spatial distribution and evolution of the snow water equivalent (SWE) during three snow seasons (2013–2016) in the coastal mountains of Lebanon. We run SnowModel (Liston and Elder, 2006a), a spatially-distributed, process-based snow model, at 100 m resolution forced by new automatic weather station (AWS) data in three snow-dominated basins of Mount Lebanon. We evaluate a recent upgrade of the liquid water percolation scheme in SnowModel, which was introduced to improve the simulation of the snow water equivalent (SWE) and runoff in warm maritime regions. The model is evaluated against continuous snow depth and snow albedo observations at the AWS, manual SWE measurements, and MODIS snow cover area between 1200 m and 3000 m a.s.l.. The results show that the new percolation scheme yields better performance especially in terms of SWE but also in snow depth and snow cover area. Over the simulation period between 2013 and 2016, the maximum snow mass was reached between December and March. Peak mean SWE (above 1200 m a.s.l.) changed significantly from year to year in the three study catchments with values ranging between 73 mm and 286 mm we (RMSE between 160 and 260 mm w.e.). We suggest that the major sources of uncertainty in simulating the SWE, in this warm Mediterranean climate, can be attributed to forcing error but also to our limited understanding of the separation between rain and snow at lower-elevations, the transient snow melt events during the accumulation season, and the high-variability of snow depth patterns at the sub-pixel scale due to the wind-driven blown-snow redistribution into karstic features and sinkholes. Yet, the use of a process-based snow model with minimal requirements for parameter estimation provides a basis to simulate snow mass SWE in non-monitored catchments and characterize the contribution of snowmelt to the karstic groundwater recharge in Lebanon. While this research focused on three basins in the Mount Lebanon, it serves as a case study to highlight the importance of wet snow processes to estimate SWE in Mediterranean mountain regions.


2014 ◽  
Vol 8 (3) ◽  
pp. 3141-3170
Author(s):  
A. Hedrick ◽  
H.-P. Marshall ◽  
A. Winstral ◽  
K. Elder ◽  
S. Yueh ◽  
...  

Abstract. Repeated Light Detection and Ranging (LiDAR) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 LiDAR-derived dataset of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically-based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the coterminous United States. Independent validation data is scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation dataset with substantial geographic coverage. Within twelve distinctive 500 m × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 LiDAR acquisitions. This supplied a dataset for constraining the uncertainty of upscaled LiDAR estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled LiDAR snow depths were then compared to the SNODAS-estimates over the entire study area for the dates of the LiDAR flights. The remotely-sensed snow depths provided a more spatially continuous comparison dataset and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between LiDAR observations and SNODAS estimates were most drastic, suggesting natural processes specific to these regions as causal influences on model uncertainty.


2020 ◽  
Vol 24 (3) ◽  
pp. 1527-1542
Author(s):  
Abbas Fayad ◽  
Simon Gascoin

Abstract. In many Mediterranean mountain regions, the seasonal snowpack is an essential yet poorly known water resource. Here, we examine, for the first time, the spatial distribution and evolution of the snow water equivalent (SWE) during three snow seasons (2013–2016) in the coastal mountains of Lebanon. We run SnowModel (Liston and Elder, 2006a), a spatially distributed, process-based snow model, at 100 m resolution forced by new automatic weather station (AWS) data in three snow-dominated basins of Mount Lebanon. We evaluate a recent upgrade of the liquid water percolation scheme in SnowModel, which was introduced to improve the simulation of the SWE and runoff in warm maritime regions. The model is evaluated against continuous snow depth and snow albedo observations at the AWS, manual SWE measurements, and MODIS snow cover area between 1200 and 3000 m a.s.l. The results show that the new percolation scheme yields better performance, especially in terms of SWE but also in snow depth and snow cover area. Over the simulation period between 2013 and 2016, the maximum snow mass was reached between December and March. Peak mean SWE (above 1200 m a.s.l.) changed significantly from year to year in the three study catchments, with values ranging between 73 and 286 mm w.e. (RMSE between 160 and 260 mm w.e.). We suggest that the major sources of uncertainty in simulating the SWE, in this warm Mediterranean climate, can be attributed to forcing error but also to our limited understanding of the separation between rain and snow at lower-elevations, the transient snowmelt events during the accumulation season, and the high variability of snow depth patterns at the subpixel scale due to the wind-driven blown-snow redistribution into karstic features and sinkholes. Yet, the use of a process-based snow model with minimal requirements for parameter estimation provides a basis to simulate snow mass SWE in nonmonitored catchments and characterize the contribution of snowmelt to the karstic groundwater recharge in Lebanon. While this research focused on three basins in the Mount Lebanon, it serves as a case study to highlight the importance of wet snow processes to estimate SWE in Mediterranean mountain regions.


2020 ◽  
Author(s):  
Alex Priestley

<p>Modelling and monitoring seasonal snow is critical for water resource management, flood forecasting and avalanche risk prediction. Snowmelt processes are of particular importance. The behaviour of liquid water in snow has a big influence on melting processes, but is difficult to measure and monitor non-invasively. Recent work has shown the promise of using electrical self potential measurements as a snow hydrology sensor. Self potential magnitudes can be used to infer both liquid water content of snow and bulk meltwater runoff. In autumn 2018, a prototype self potential monitoring array was installed at Col de Porte in the French Alps, alongside full hydrological and meteorological measurements made routinely at the site. Self potential measurements were taken throughout the following winter, with manual snow pit data obtained in spring 2019. A physically-based snow hydrology model was run for the winter, and an electrical model was coupled to the snow model to create a synthetic set of self potential observations. These synthetic observations were compared to the observed self potential magnitudes to evaluate the effectiveness of the snow model, and to investigate the potential for using the self potential array as part of a coupled geophysical monitoring and modelling system.</p>


2015 ◽  
Vol 9 (1) ◽  
pp. 13-23 ◽  
Author(s):  
A. Hedrick ◽  
H.-P. Marshall ◽  
A. Winstral ◽  
K. Elder ◽  
S. Yueh ◽  
...  

Abstract. Repeated light detection and ranging (lidar) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 lidar-derived data set of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the conterminous United States. Independent validation data are scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation data set with substantial geographic coverage. Within 12 distinctive 500 × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 lidar acquisitions. This supplied a data set for constraining the uncertainty of upscaled lidar estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled lidar snow depths were then compared to the SNODAS estimates over the entire study area for the dates of the lidar flights. The remotely sensed snow depths provided a more spatially continuous comparison data set and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between lidar observations and SNODAS estimates were most drastic, providing insight into the causal influences of natural processes on model uncertainty.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1265 ◽  
Author(s):  
Johanna Geis-Schroer ◽  
Sebastian Hubschneider ◽  
Lukas Held ◽  
Frederik Gielnik ◽  
Michael Armbruster ◽  
...  

In this contribution, measurement data of phase, neutral, and ground currents from real low voltage (LV) feeders in Germany is presented and analyzed. The data obtained is used to review and evaluate common modeling approaches for LV systems. An alternative modeling approach for detailed cable and ground modeling, which allows for the consideration of typical German LV earthing conditions and asymmetrical cable design, is proposed. Further, analytical calculation methods for model parameters are described and compared to laboratory measurement results of real LV cables. The models are then evaluated in terms of parameter sensitivity and parameter relevance, focusing on the influence of conventionally performed simplifications, such as neglecting house junction cables, shunt admittances, or temperature dependencies. By comparing measurement data from a real LV feeder to simulation results, the proposed modeling approach is validated.


Author(s):  
Clemens M. Lechner ◽  
Nivedita Bhaktha ◽  
Katharina Groskurth ◽  
Matthias Bluemke

AbstractMeasures of cognitive or socio-emotional skills from large-scale assessments surveys (LSAS) are often based on advanced statistical models and scoring techniques unfamiliar to applied researchers. Consequently, applied researchers working with data from LSAS may be uncertain about the assumptions and computational details of these statistical models and scoring techniques and about how to best incorporate the resulting skill measures in secondary analyses. The present paper is intended as a primer for applied researchers. After a brief introduction to the key properties of skill assessments, we give an overview over the three principal methods with which secondary analysts can incorporate skill measures from LSAS in their analyses: (1) as test scores (i.e., point estimates of individual ability), (2) through structural equation modeling (SEM), and (3) in the form of plausible values (PVs). We discuss the advantages and disadvantages of each method based on three criteria: fallibility (i.e., control for measurement error and unbiasedness), usability (i.e., ease of use in secondary analyses), and immutability (i.e., consistency of test scores, PVs, or measurement model parameters across different analyses and analysts). We show that although none of the methods are optimal under all criteria, methods that result in a single point estimate of each respondent’s ability (i.e., all types of “test scores”) are rarely optimal for research purposes. Instead, approaches that avoid or correct for measurement error—especially PV methodology—stand out as the method of choice. We conclude with practical recommendations for secondary analysts and data-producing organizations.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4638
Author(s):  
Simon Pratschner ◽  
Pavel Skopec ◽  
Jan Hrdlicka ◽  
Franz Winter

A revolution of the global energy industry is without an alternative to solving the climate crisis. However, renewable energy sources typically show significant seasonal and daily fluctuations. This paper provides a system concept model of a decentralized power-to-green methanol plant consisting of a biomass heating plant with a thermal input of 20 MWth. (oxyfuel or air mode), a CO2 processing unit (DeOxo reactor or MEA absorption), an alkaline electrolyzer, a methanol synthesis unit, an air separation unit and a wind park. Applying oxyfuel combustion has the potential to directly utilize O2 generated by the electrolyzer, which was analyzed by varying critical model parameters. A major objective was to determine whether applying oxyfuel combustion has a positive impact on the plant’s power-to-liquid (PtL) efficiency rate. For cases utilizing more than 70% of CO2 generated by the combustion, the oxyfuel’s O2 demand is fully covered by the electrolyzer, making oxyfuel a viable option for large scale applications. Conventional air combustion is recommended for small wind parks and scenarios using surplus electricity. Maximum PtL efficiencies of ηPtL,Oxy = 51.91% and ηPtL,Air = 54.21% can be realized. Additionally, a case study for one year of operation has been conducted yielding an annual output of about 17,000 t/a methanol and 100 GWhth./a thermal energy for an input of 50,500 t/a woodchips and a wind park size of 36 MWp.


Sign in / Sign up

Export Citation Format

Share Document