scholarly journals Eddy-Driven Recirculations from a Localized Transient Forcing

2012 ◽  
Vol 42 (3) ◽  
pp. 430-447 ◽  
Author(s):  
Stephanie Waterman ◽  
Steven R. Jayne

Abstract The generation of time-mean recirculation gyres from the nonlinear rectification of an oscillatory, spatially localized vorticity forcing is examined analytically and numerically. Insights into the rectification mechanism are presented and the influence of the variations of forcing parameters, stratification, and mean background flow are explored. This exploration shows that the efficiency of the rectification depends on the properties of the energy radiation from the forcing, which in turn depends on the waves that participate in the rectification process. The particular waves are selected by the relation of the forcing parameters to the available free Rossby wave spectrum. An enhanced response is achieved if the parameters are such to select meridionally propagating waves, and a resonant response results if the forcing selects the Rossby wave with zero zonal group velocity and maximum meridional group velocity, which is optimal for producing rectified flows. Although formulated in a weakly nonlinear wave limit, simulations in a more realistic turbulent system suggest that this understanding of the mechanism remains useful in a strongly nonlinear regime with consideration of mean flow effects and wave–mean flow interaction now needing to be taken into account. The problem presented here is idealized but has general application in the understanding of eddy–eddy and eddy–mean flow interactions as the contrasting limit to that of spatially broad (basinwide) forcing and is relevant given that many sources of oceanic eddies are localized in space.

2021 ◽  
Author(s):  
Xiaofan Ma ◽  
Gang Huang ◽  
Xichen Li ◽  
Shouwei Li

Abstract Observations, theoretical analyses, and climate models show that the period of multidecadal variability of the Atlantic Meridional Overturning Circulation (AMOC) is related to westward temperature propagations in the subpolar North Atlantic, which is modulated by oceanic baroclinic Rossby waves. Here, we find major periods of AMOC variability of 12-28 years and associated westward temperature propagations in the preindustrial simulations of 9 CMIP6/CMIP5 models. Comparison with observations shows that the models reasonably simulate ocean stratifications in turn oceanic Rossby waves in the subpolar North Atlantic. The timescales of Rossby waves propagating on a static background flow across the subpolar North Atlantic basin overestimate the AMOC periods. The mean flow effects involving westward geostrophic self-advection and eastward mean advection largely shorten and greatly improve the estimate of AMOC periods through increasing Rossby wave speeds. Our results illustrate the importance of considering mean flow effects on Rossby wave propagations in the estimate of AMOC periods.


2013 ◽  
Vol 43 (8) ◽  
pp. 1666-1690 ◽  
Author(s):  
Stephanie Waterman ◽  
Brian J. Hoskins

Abstract This manuscript revisits a study of eddy–mean flow interactions in an idealized model of a western boundary current extension jet using properties of the horizontal velocity correlation tensor to diagnose characteristics of average eddy shape, orientation, propagation, and mean flow feedback. These eddy characteristics are then used to provide a new description of the eddy–mean flow interactions observed in terms of different ingredients of the eddy motion. The diagnostics show patterns in average eddy shape, orientation, and propagation that are consistent with the signatures of jet instability in the upstream region and wave radiation in the downstream region. Together they give a feedback onto the mean flow that gives the downstream character of the jet and drives the jet's recirculation gyres. A breakdown of the eddy forcing into contributions from individual terms confirms the expected role of cross-jet gradients in meridional eddy tilt in stabilizing the jet to its barotropic instability; however, it also reveals important roles played by the along-jet evolution of eddy zonal–meridional elongation. It is the mean flow forcing derived from these patterns that acts to strengthen and extend the jet downstream and forces the time-mean recirculation gyres. This understanding of the dependence of mean flow forcing on eddy structural properties suggests that failure to adequately resolve eddy elongation could underlie the weakened jet strength, extent, and changed recirculation structure seen in this idealized model for reduced spatial resolutions. Further, it may suggest new ideas for the parameterization of this forcing.


2003 ◽  
Vol 17 (22n24) ◽  
pp. 4278-4283
Author(s):  
Elena Martín ◽  
Carlos Martel ◽  
José M. Vega

We study the weakly nonlinear evolution of Faraday waves in a 2D container that is vertically vibrated. In the small viscosity limit, the evolution of the surface waves is coupled to a non-oscillatory mean flow that develops in the bulk of the container. The corresponding long time (Navier-Stokes+amplitude) equations are derived and analyzed numerically. The results indicate that the (usually ignored) mean flow plays an essential role in the stability of the surface waves and in the bifurcated wave patterns.


2002 ◽  
Vol 20 (12) ◽  
pp. 2033-2038 ◽  
Author(s):  
S. B. Malinga ◽  
L. M. G. Poole

Abstract. Meteor wind data at Grahamstown (33.3° S, 26.5° E) have been used to study the short-term (planetary scale) variations of the diurnal and semidiurnal tidal amplitudes at ~ 90 km altitude. Wavelet multi-resolution and spectral techniques reveal that planetary periodicities of ~ 10 and ~ 16 days dominate the wave spectrum in the ~ 2–20-day period range. The quasi-16-day oscillation is thought to be related to similar oscillations in the lower atmosphere. Also, there seems to be a link between the winter/equinox 16-day oscillation in the mean flow and that in the semidiurnal tidal amplitudes. It is thought that this is probably due to either the coupling between the normal mode-mean flow interactions and the gravity wave-tidal interactions, or to direct nonlinear interactions between planetary waves and the tide. On the other hand, a comparison of the mean flow and the diurnal tide does not show evidence of correlation. Possible reasons for this disparity are discussed briefly.Key words. Meteorology and atmospheric dynamics (waves and tides)


Author(s):  
Fabienne Schmid ◽  
Elena Gagarina ◽  
Rupert Klein ◽  
Ulrich Achatz

AbstractIdealized integral studies of the dynamics of atmospheric inertia-gravity waves (IGWs) from their sources in the troposphere (e.g., by spontaneous emission from jets and fronts) to dissipation and mean-flow effects at higher altitudes could contribute to a better treatment of these processes in IGW parameterizations in numerical weather prediction and climate simulation. It seems important that numerical codes applied for this purpose are efficient and focus on the essentials. Therefore a previously published staggered-grid solver for f-plane soundproof pseudo-incompressible dynamics is extended here by two main components. These are 1) a semi-implicit time stepping scheme for the integration of buoyancy and Coriolis effects, and 2) the incorporation of Newtonian heating consistent with pseudo-incompressible dynamics. This heating function is used to enforce a temperature profile that is baroclinically unstable in the troposphere and it allows the background state to vary in time. Numerical experiments for several benchmarks are compared against a buoyancy/Coriolis-explicit third-order Runge-Kutta scheme, verifying the accuracy and efficiency of the scheme. Preliminary mesoscale simulations with baroclinic-wave activity in the troposphere show intensive small-scale wave activity at high altitudes, and they also indicate there the expected reversal of the zonal-mean-zonal winds.


2011 ◽  
Vol 41 (4) ◽  
pp. 682-707 ◽  
Author(s):  
Stephanie Waterman ◽  
Steven R. Jayne

A theoretical study on the role of eddy-mean flow interactions in the time-mean dynamics of a zonally evolving, unstable, strongly inertial jet in a configuration and parameter regime that is relevant to oceanic western boundary current (WBC) jets is described. Progress is made by diagnosing the eddy effect on the time-mean circulation, examining the mechanism that permits the eddies to drive the time-mean recirculation gyres, and exploring the dependence of the eddy effect on system parameters. It is found that the nature of the eddy-mean flow interactions in this idealized configuration is critically dependent on along-stream position, in particular relative to the along-stream evolving stability properties of the time-mean jet. Just after separation from the western boundary, eddies act to stabilize the jet through downgradient fluxes of potential vorticity (PV). Downstream of where the time-mean jet has (through the effect of the eddies) been stabilized, eddies act to drive the time-mean recirculations through the mechanism of an upgradient PV flux. This upgradient flux is permitted by an eddy enstrophy convergence downstream of jet stabilization, which results from the generation of eddies in the upstream region where the jet is unstable, the advection of that eddy activity along stream by the jet, and the dissipation of the eddies in the region downstream of jet stabilization. It is in this region of eddy decay that eddies drive the time-mean recirculations through the mechanism of nonlinear eddy rectification, resulting from the radiation of waves from a localized region. It is found that similar mechanisms operate in both barotropic and baroclinic configurations, although differences in the background PV gradient on which the eddies act implies that the recirculation-driving mechanism is more effective in the baroclinic case. This study highlights the important roles that eddies play in the idealized WBC jet dynamics considered here of stabilizing the jet and driving the flanking recirculations. In the absence of eddy terms, the magnitude of the upper-ocean jet transport would be significantly less and the abyssal ocean recirculations (and their significant enhancement to the jet transport) would be missing altogether.


Sign in / Sign up

Export Citation Format

Share Document