scholarly journals The 16-day variation in tidal amplitudes at Grahamstown (33.3° S, 26.5° E)

2002 ◽  
Vol 20 (12) ◽  
pp. 2033-2038 ◽  
Author(s):  
S. B. Malinga ◽  
L. M. G. Poole

Abstract. Meteor wind data at Grahamstown (33.3° S, 26.5° E) have been used to study the short-term (planetary scale) variations of the diurnal and semidiurnal tidal amplitudes at ~ 90 km altitude. Wavelet multi-resolution and spectral techniques reveal that planetary periodicities of ~ 10 and ~ 16 days dominate the wave spectrum in the ~ 2–20-day period range. The quasi-16-day oscillation is thought to be related to similar oscillations in the lower atmosphere. Also, there seems to be a link between the winter/equinox 16-day oscillation in the mean flow and that in the semidiurnal tidal amplitudes. It is thought that this is probably due to either the coupling between the normal mode-mean flow interactions and the gravity wave-tidal interactions, or to direct nonlinear interactions between planetary waves and the tide. On the other hand, a comparison of the mean flow and the diurnal tide does not show evidence of correlation. Possible reasons for this disparity are discussed briefly.Key words. Meteorology and atmospheric dynamics (waves and tides)

2002 ◽  
Vol 20 (12) ◽  
pp. 2027-2031 ◽  
Author(s):  
S. B. Malinga ◽  
L. M. G. Poole

Abstract. Data from the Grahamstown (33.3° S, 26.5° E) meteor radar have been used to study the short-term variations of the mean flow at ~ 90 km altitude. The results show considerable variation characterised by a superposition of fluctuations on different planetary time scales. Wavelet multi-resolution and spectral techniques reveal that the quasi-16-day oscillation dominates the wave spectrum in the ~ 2–20-day period range. This quasi-16-day oscillation, which is thought to be related to a similar oscillation in the lower atmosphere, is found to be dominant in winter and the equinoxes. However, it is sometimes significant in summer, which could be due to cross-equatorial ducting and the selective transmissivity of gravity waves.Key words. Meteorology and atmospheric dynamics (waves and tides)


2011 ◽  
Vol 68 (9) ◽  
pp. 2042-2060 ◽  
Author(s):  
David A. Ortland ◽  
M. Joan Alexander ◽  
Alison W. Grimsdell

Abstract Convective heating profiles are computed from one month of rainfall rate and cloud-top height measurements using global Tropical Rainfall Measuring Mission and infrared cloud-top products. Estimates of the tropical wave response to this heating and the mean flow forcing by the waves are calculated using linear and nonlinear models. With a spectral resolution up to zonal wavenumber 80 and frequency up to 4 cpd, the model produces 50%–70% of the zonal wind acceleration required to drive a quasi-biennial oscillation (QBO). The sensitivity of the wave spectrum to the assumed shape of the heating profile, to the mean wind and temperature structure of the tropical troposphere, and to the type of model used is also examined. The redness of the heating spectrum implies that the heating strongly projects onto Hough modes with small equivalent depth. Nonlinear models produce wave flux significantly smaller than linear models due to what appear to be dynamical processes that limit the wave amplitude. Both nonlinearity and mean winds in the lower stratosphere are effective in reducing the Rossby wave response to heating relative to the response in a linear model for a mean state at rest.


2008 ◽  
Vol 26 (5) ◽  
pp. 1233-1241 ◽  
Author(s):  
A. Yu. Kanukhina ◽  
E. V. Suvorova ◽  
L. A. Nechaeva ◽  
E. K. Skrygina ◽  
A. I. Pogoreltsev

Abstract. NCEP/NCAR (National Center for Environmental Prediction – National Center for Atmospheric Research) data have been used to estimate the long-term variability of the mean flow, temperature, and Stationary Planetary Waves (SPW) in the troposphere and lower stratosphere. The results obtained show noticeable climatic variabilities in the intensity and position of the tropospheric jets that are caused by temperature changes in the lower atmosphere. As a result, we can expect that this variability of the mean flow will cause the changes in the SPW propagation conditions. The simulation of the SPW with zonal wave number m=1 (SPW1), performed with a linearized model using the mean flow distributions typical for the 1960s and for the beginning of 21st century, supports this assumption and shows that during the last 40 years the amplitude of the SPW1 in the stratosphere and mesosphere increased substantially. The analysis of the SPW amplitudes extracted from the geopotential height and zonal wind NCEP/NCAR data supports the results of simulation and shows that during the last years there exists an increase in the SPW1 activity in the lower stratosphere. These changes in the amplitudes are accompanied by increased interannual variability of the SPW1, as well. Analysis of the SPW2 activity shows that changes in its amplitude have a different sign in the northern winter hemisphere and at low latitudes in the southern summer hemisphere. The value of the SPW2 variability differs latitudinally and can be explained by nonlinear interference of the primary wave propagation from below and from secondary SPW2.


2012 ◽  
Vol 42 (3) ◽  
pp. 430-447 ◽  
Author(s):  
Stephanie Waterman ◽  
Steven R. Jayne

Abstract The generation of time-mean recirculation gyres from the nonlinear rectification of an oscillatory, spatially localized vorticity forcing is examined analytically and numerically. Insights into the rectification mechanism are presented and the influence of the variations of forcing parameters, stratification, and mean background flow are explored. This exploration shows that the efficiency of the rectification depends on the properties of the energy radiation from the forcing, which in turn depends on the waves that participate in the rectification process. The particular waves are selected by the relation of the forcing parameters to the available free Rossby wave spectrum. An enhanced response is achieved if the parameters are such to select meridionally propagating waves, and a resonant response results if the forcing selects the Rossby wave with zero zonal group velocity and maximum meridional group velocity, which is optimal for producing rectified flows. Although formulated in a weakly nonlinear wave limit, simulations in a more realistic turbulent system suggest that this understanding of the mechanism remains useful in a strongly nonlinear regime with consideration of mean flow effects and wave–mean flow interaction now needing to be taken into account. The problem presented here is idealized but has general application in the understanding of eddy–eddy and eddy–mean flow interactions as the contrasting limit to that of spatially broad (basinwide) forcing and is relevant given that many sources of oceanic eddies are localized in space.


2020 ◽  
Author(s):  
Tatsuro Iwanaka ◽  
Takeshi Imamura ◽  
Yeon Joo Lee ◽  
Atsushi Yamazaki

<p>Venus is entirely covered by optically thick clouds that play essential roles in the Venus' climate system. The cloud consists of H<sub>2</sub>SO<sub>4</sub> aerosols, and H<sub>2</sub>SO<sub>4</sub> is produced from SO<sub>2</sub> photochemically at the cloud top. SO<sub>2</sub> is abundant in the lower part of the cloud layer and the subcloud region (Bertaux, 1996), and is thought to be transported to the cloud top in the sulfur cycle (Mills et al., 2007), although the dynamical processes responsible for the transport are not understood. The purpose of our study is to confirm that SO<sub>2</sub> is supplied from the lower atmosphere to the cloud top where it is lost via photochemical reactions and to determine how the stationary planetary-scale circulation and time-varying disturbances contribute to the SO<sub>2</sub> transport. The horizontal divergence calculated from the cloud-tracked wind (Ikegawa and Horinouchi, 2016; Horinouchi et al., 2018) is considered as an index of the vertical flow in the cloud: a horizontally divergent (convergent) flow will tend to correspond to an upward (downward) wind for convection-like motions, while the divergence is out of phase with the vertical wind by 90 degrees for gravity waves including thermal tides. The 283-nm radiance, which is subject to SO<sub>2</sub> absorption, measured by Akatsuki UVI (Yamazaki et al., 2018) was converted to UV albedo following the method of Lee et al. (2015, 2017), and low (high) albedo regions are considered to be regions of high (low) SO<sub>2</sub> density. By comparing the Lagrangian derivative of UV albedo with the horizontal divergence, the relation between the change of the cloud-top SO<sub>2</sub> and the vertical flow was obtained for independent air parcels and the mean field. The result shows that the solar-fixed structure of the UV albedo is consistent with the supply of SO<sub>2</sub> by the updraft phase of  the thermal tides and that transient and localized UV albedo variations are consistent with the supply of SO<sub>2</sub> by ascending flows coincident with horizontal divergences.</p>


2019 ◽  
Vol 49 (1) ◽  
pp. 247-267 ◽  
Author(s):  
Esther Capó ◽  
Alejandro Orfila ◽  
Evan Mason ◽  
Simón Ruiz

AbstractEnergy conversion routes are investigated in the western Mediterranean Sea from the eddy–mean flow interactions. The sources of eddy kinetic energy are analyzed by applying a regional formulation of the Lorenz energy cycle to 18 years of numerical simulation at eddy-resolving resolution (3.5 km), which allows for identifying whether the energy exchange between the mean and eddy flow is local or nonlocal. The patterns of energy conversion between the mean and eddy kinetic and potential energy are estimated in three subregions of the domain: the Alboran Sea, the Algerian Basin, and the northern basin. The spatial characterization of the energy routes hints at the physical mechanisms involved in maintaining the balance, suggesting that flow–topography interaction is strongly linked to eddy growth in most of the domain.


Using the B-plane approximation we formulate the equations which govern small perturbations in a rotating atmosphere and describe a wide class of possible wave motions, in the presence of a background zonal flow, ranging from ‘moderately high’ frequency acoustic-gravity-inertial waves to ‘low’ frequency planetary-scale (Rossby) waves. The discussion concentrates mainly on the propagation properties of Rossby waves in various types of latitudinally sheared zonal flows which occur at different heights and seasons in the earth’s atmosphere. However, it is first shown that gravity waves in a latitudinally sheared zonal flow exhibit critical latitude behaviour where the ‘intrinsic ’ wave frequency matches the Brunt-Vaisala frequency (in contrast to the case of gravity waves in a vertically sheared flow where a critical layer exists where the horizontal wave phase speed equals the flow speed) and that the wave behaviour near such a latitude is similar to that of Rossby waves in the vicinity of their critical latitudes which occur where the ‘intrinsic’ wave frequency approaches zero. In the absence of zonal flow in the atmosphere the geometry of the planetary wave dispersion equation (which is described by a highly elongated ellipsoid in wave-number vector space) implies that energy propagates almost parallel to the /--planes. This feature may provide a reason why there seems to be so little coupling between planetary scale motions in the lower and upper atmosphere. Planetary waves can be made to propagate eastward, as well as westward, if they are evanescent in the vertical direction. The W.K.B. approximation, which provides an approximate description of wave propagation in slowly varying zonal wind shears, shows that the distortion of the wave-number surface caused by the zonal flow controls the dependence of the wave amplitude on the zonal flow speed. In particular it follows that Rossby waves propagating into regions of strengthening westerlies are intensified in amplitude whereas those waves propagating into strengthening easterlies are diminished in amplitude. A classification of the various types of ray trajectories that arise in zonal flow profiles occurring in the Earth’s atmosphere, such as jet-like variations of westerly or easterly zonal flow or a belt of westerlies bounded by a belt of easterlies, is given, and provides the conditions giving rise to such phenomena as critical latitude behaviour and wave trapping. In a westerly flow there is a tendency for the combined effects on wave propagation of jet-like variations of B and zonal flow speed to counteract each other, whereas in an easterly flow such variations tend to reinforce each other. An examination of the reflexion and refraction of Rossby waves at a sharp jump in the zonal flow speed shows that under certain conditions wave amplification, or over-reflexion, can arise with the implication that the reflected wave can extract energy from the background streaming motion. On the other hand the wave behaviour near critical latitudes, which can be described in terms of a discontinuous jump in the ‘wave invariant’, shows that such latitudes can act as either wave absorbers (in which case the mean flow is accelerated there) or wave emitters (in which case the mean flow is decelerated there).


2009 ◽  
Vol 66 (2) ◽  
pp. 373-392 ◽  
Author(s):  
Andrew J. Majda ◽  
Samuel N. Stechmann

Abstract Convective momentum transport (CMT) plays a central role in interactions across multiple space and time scales. However, because of the multiscale nature of CMT, quantifying and parameterizing its effects is often a challenge. Here a simple dynamic model with features of CMT is systematically derived and studied. The model includes interactions between a large-scale zonal mean flow and convectively coupled gravity waves, and convection is parameterized using a multicloud model. The moist convective wave–mean flow interactions shown here have several interesting features that distinguish them from other classical wave–mean flow settings. First an intraseasonal oscillation of the mean flow and convectively coupled waves (CCWs) is described. The mean flow oscillates due to both upscale and downscale CMT, and the CCWs weaken, change their propagation direction, and strengthen as the mean flow oscillates. The basic mechanisms of this oscillation are corroborated by linear stability theory with different mean flow background states. Another case is set up to imitate the westerly wind burst phase of the Madden–Julian oscillation (MJO) in the simplified dynamic model. In this case, CMT first accelerates the zonal jet with the strongest westerly wind aloft, and then there is deceleration of the winds due to CMT; this occurs on an intraseasonal time scale and is in qualitative agreement with actual observations of the MJO. Also, in this case, a multiscale envelope of convection propagates westward with smaller-scale convection propagating eastward within the envelope. The simplified dynamic model is able to produce this variety of behavior even though it has only a single horizontal direction and no Coriolis effect.


2017 ◽  
Vol 74 (10) ◽  
pp. 3209-3228 ◽  
Author(s):  
Fen Xu ◽  
X. San Liang

Abstract Using a newly developed analysis tool, multiscale window transform (MWT), and the MWT-based localized multiscale energetics analysis, the 2012/13 sudden stratospheric warming (SSW) is diagnosed for an understanding of the underlying dynamics. The fields are first reconstructed onto three scale windows: that is, mean window, sudden warming window or SSW window, and synoptic window. According to the reconstructions, the major warming period may be divided into three stages: namely, the stages of rapid warming, maintenance, and decay, each with different mechanisms. It is found that the explosive growth of temperature in the rapid warming stage (28 December–10 January) results from the collaboration of a strong poleward heat flux and canonical transfers through baroclinic instabilities in the polar region, which extract available potential energy (APE) from the mean-scale reservoir. In the course, a portion of the acquired APE is converted to and stored in the SSW-scale kinetic energy (KE), leading to a reversal of the polar night jet. In the stage of maintenance (11–25 January), the mechanism is completely different: First the previously converted energy stored in the SSW-scale KE is converted back, and, most importantly, in this time a strong barotropic instability happens over Alaska–Canada, which extracts the mean-scale KE to maintain the high temperature, while the mean-scale KE is mostly from the lower atmosphere, in conformity with the classical paradigm of mean flow–wave interaction with the upward-propagating planetary waves. This study provides an example that a warming may be generated in different stages through distinctly different mechanisms.


2013 ◽  
Vol 43 (8) ◽  
pp. 1666-1690 ◽  
Author(s):  
Stephanie Waterman ◽  
Brian J. Hoskins

Abstract This manuscript revisits a study of eddy–mean flow interactions in an idealized model of a western boundary current extension jet using properties of the horizontal velocity correlation tensor to diagnose characteristics of average eddy shape, orientation, propagation, and mean flow feedback. These eddy characteristics are then used to provide a new description of the eddy–mean flow interactions observed in terms of different ingredients of the eddy motion. The diagnostics show patterns in average eddy shape, orientation, and propagation that are consistent with the signatures of jet instability in the upstream region and wave radiation in the downstream region. Together they give a feedback onto the mean flow that gives the downstream character of the jet and drives the jet's recirculation gyres. A breakdown of the eddy forcing into contributions from individual terms confirms the expected role of cross-jet gradients in meridional eddy tilt in stabilizing the jet to its barotropic instability; however, it also reveals important roles played by the along-jet evolution of eddy zonal–meridional elongation. It is the mean flow forcing derived from these patterns that acts to strengthen and extend the jet downstream and forces the time-mean recirculation gyres. This understanding of the dependence of mean flow forcing on eddy structural properties suggests that failure to adequately resolve eddy elongation could underlie the weakened jet strength, extent, and changed recirculation structure seen in this idealized model for reduced spatial resolutions. Further, it may suggest new ideas for the parameterization of this forcing.


Sign in / Sign up

Export Citation Format

Share Document