scholarly journals Three-Dimensional Double-Ridge Internal Tide Resonance in Luzon Strait

2014 ◽  
Vol 44 (3) ◽  
pp. 850-869 ◽  
Author(s):  
Maarten C. Buijsman ◽  
Jody M. Klymak ◽  
Sonya Legg ◽  
Matthew H. Alford ◽  
David Farmer ◽  
...  

Abstract The three-dimensional (3D) double-ridge internal tide interference in the Luzon Strait in the South China Sea is examined by comparing 3D and two-dimensional (2D) realistic simulations. Both the 3D simulations and observations indicate the presence of 3D first-mode (semi)diurnal standing waves in the 3.6-km-deep trench in the strait. As in an earlier 2D study, barotropic-to-baroclinic energy conversion, flux divergence, and dissipation are greatly enhanced when semidiurnal tides dominate relative to periods dominated by diurnal tides. The resonance in the 3D simulation is several times stronger than in the 2D simulations for the central strait. Idealized experiments indicate that, in addition to ridge height, the resonance is only a function of separation distance and not of the along-ridge length; that is, the enhanced resonance in 3D is not caused by 3D standing waves or basin modes. Instead, the difference in resonance between the 2D and 3D simulations is attributed to the topographic blocking of the barotropic flow by the 3D ridges, affecting wave generation, and a more constructive phasing between the remotely generated internal waves, arriving under oblique angles, and the barotropic tide. Most of the resonance occurs for the first mode. The contribution of the higher modes is reduced because of 3D radiation, multiple generation sites, scattering, and a rapid decay in amplitude away from the ridge.

2021 ◽  
Vol 9 (6) ◽  
pp. 592
Author(s):  
Qi’an Chen ◽  
Liu Yu ◽  
Qingxuan Yang ◽  
Philip Vetter ◽  
Hongzhou Xu ◽  
...  

In this study, M2 tidal energy and tide-induced mixing in the Mariana double ridges are investigated with a high-resolution three-dimensional non-hydrostatic numerical model and baroclinic energy budget analysis. The interference effect of the double ridges on the internal tide in the Mariana is examined by omitting either the eastern or the western ridge. Our results show that the baroclinic velocity on the sides of the interior facing slopes of the double ridges is larger than that on the other sides. In the double ridges, high values of dissipation reaching O (10−6 W kg−1) are accompanied by diapycnal diffusivity reaching O (10−1 m2 s−1), which is several orders of magnitude higher than the mixing of the open ocean. The bottom diapycnal mixing in the inner region between the two ridges is one order of magnitude larger than the mixing outside the ridges, indicating the important role of the interference of the double-ridge topography on the mixing in the Mariana Arc. Omitting either the eastern or the western ridge would have a significant impact on tide current, baroclinic energy flux and dissipation, and diapycnal mixing. The internal tide conversion, dissipation, and flux divergence are amplified by the double ridge topography, especially in the central part of the double ridges. Through energy budgets analysis, we conclude that the eastern ridge is the main source of the baroclinic tide in the Mariana double ridges.


2011 ◽  
Vol 41 (11) ◽  
pp. 2211-2222 ◽  
Author(s):  
Matthew H. Alford ◽  
Jennifer A. MacKinnon ◽  
Jonathan D. Nash ◽  
Harper Simmons ◽  
Andy Pickering ◽  
...  

Abstract Internal tide generation, propagation, and dissipation are investigated in Luzon Strait, a system of two quasi-parallel ridges situated between Taiwan and the Philippines. Two profiling moorings deployed for about 20 days and a set of nineteen 36-h lowered ADCP–CTD time series stations allowed separate measurement of diurnal and semidiurnal internal tide signals. Measurements were concentrated on a northern line, where the ridge spacing was approximately equal to the mode-1 wavelength for semidiurnal motions, and a southern line, where the spacing was approximately two-thirds that. The authors contrast the two sites to emphasize the potential importance of resonance between generation sites. Throughout Luzon Strait, baroclinic energy, energy fluxes, and turbulent dissipation were some of the strongest ever measured. Peak-to-peak baroclinic velocity and vertical displacements often exceeded 2 m s−1 and 300 m, respectively. Energy fluxes exceeding 60 kW m−1 were measured at spring tide at the western end of the southern line. On the northern line, where the western ridge generates appreciable eastward-moving signals, net energy flux between the ridges was much smaller, exhibiting a nearly standing wave pattern. Overturns tens to hundreds of meters high were observed at almost all stations. Associated dissipation was elevated in the bottom 500–1000 m but was strongest by far atop the western ridge on the northern line, where >500-m overturns resulted in dissipation exceeding 2 × 10−6 W kg−1 (implying diapycnal diffusivity Kρ > 0.2 m2 s−1). Integrated dissipation at this location is comparable to conversion and flux divergence terms in the energy budget. The authors speculate that resonance between the two ridges may partly explain the energetic motions and heightened dissipation.


2012 ◽  
Vol 42 (2) ◽  
pp. 272-290 ◽  
Author(s):  
Dujuan Kang ◽  
Oliver Fringer

Abstract A detailed energy analysis of the barotropic and baroclinic M2 tides in the Monterey Bay area is performed. The authors first derive a theoretical framework for analyzing internal tide energetics based on the complete form of the barotropic and baroclinic energy equations, which include the full nonlinear and nonhydrostatic energy flux contributions as well as an improved evaluation of the available potential energy. This approach is implemented in the Stanford Unstructured Nonhydrostatic Terrain-Following Adaptive Navier–Stokes Simulator (SUNTANS). Results from three-dimensional, high-resolution SUNTANS simulations are analyzed to estimate the tidal energy partitioning among generation, radiation, and dissipation. A 200 km × 230 km domain including all typical topographic features in this region is used to represent the Monterey Bay area. Of the 152-MW energy lost from the barotropic tide, approximately 133 MW (88%) is converted into baroclinic energy through internal tide generation, and 42% (56 MW) of this baroclinic energy radiates away into the open ocean. The tidal energy partitioning depends greatly on the topographic features. The Davidson Seamount is most efficient at baroclinic energy generation and radiation, whereas the Monterey Submarine Canyon acts as an energy sink. Energy flux contributions from nonlinear and nonhydrostatic effects are also examined. In the Monterey Bay area, the nonlinear and nonhydrostatic contributions are quite small. Moreover, the authors investigate the character of internal tide generation and find that in the Monterey Bay area the generated baroclinic tides are mainly linear and in the form of internal tidal beams. Comparison of the modeled tidal conversion to previous theoretical estimates shows that they are consistent with one another.


2001 ◽  
Vol 57 (4) ◽  
pp. 471-484 ◽  
Author(s):  
L. Elcoro ◽  
J. M. Perez-Mato ◽  
R. L. Withers

A new, unified superspace approach to the structural characterization of the perovskite-related Sr n (Nb,Ti) n O3n + 2 compound series, strontium niobium/titanium oxide, is presented. To a first approximation, the structure of any member of this compound series can be described in terms of the stacking of (110)-bounded perovskite slabs, the number of atomic layers in a single perovskite slab varying systematically with composition. The various composition-dependent layer-stacking sequences can be interpreted in terms of the structural modulation of a common underlying average structure. The average interlayer separation distance is directly related to the average structure periodicity along the layer stacking direction, while an inherent modulation thereof is produced by the presence of different types of layers (particularly vacant layers) along this stacking direction. The fundamental atomic modulation is therefore occupational and can be described by means of crenel (step-like) functions which define occupational atomic domains in the superspace, similarly to what occurs for quasicrystals. While in a standard crystallographic approach, one must describe each structure (in particular the space group and cell parameters) separately for each composition, the proposed superspace model is essentially common to the whole compound series. The superspace symmetry group is unique, while the primary modulation wavevector and the width of some occupation domains vary linearly with composition. For each rational composition, the corresponding conventional three-dimensional space group can be derived from the common superspace group. The resultant possible three-dimensional space groups are in agreement with all the symmetries reported for members of the series. The symmetry-breaking phase transitions with temperature observed in many compounds can be explained in terms of a change in superspace group, again in common for the whole compound series. Inclusion of the incommensurate phases, present in many compounds of the series, lifts the analysis into a five-dimensional superspace. The various four-dimensional superspace groups reported for this incommensurate phase at different compositions are shown to be predictable from a proposed five-dimensional superspace group apparently common to the whole compound series. A comparison with the scarce number of refined structures in this system and the homologous (Nb,Ca)6Ti6O20 compound demonstrates the suitability of the proposed formalism.


2002 ◽  
Vol 450 ◽  
pp. 67-95 ◽  
Author(s):  
CH. BLOHM ◽  
H. C. KUHLMANN

The incompressible fluid flow in a rectangular container driven by two facing sidewalls which move steadily in anti-parallel directions is investigated experimentally for Reynolds numbers up to 1200. The moving sidewalls are realized by two rotating cylinders of large radii tightly closing the cavity. The distance between the moving walls relative to the height of the cavity (aspect ratio) is Γ = 1.96. Laser-Doppler and hot-film techniques are employed to measure steady and time-dependent vortex flows. Beyond a first threshold robust, steady, three-dimensional cells bifurcate supercritically out of the basic flow state. Through a further instability the cellular flow becomes unstable to oscillations in the form of standing waves with the same wavelength as the underlying cellular flow. If both sidewalls move with the same velocity (symmetrical driving), the oscillatory instability is found to be tricritical. The dependence on two sidewall Reynolds numbers of the ranges of existence of steady and oscillatory cellular flows is explored. Flow symmetries and quantitative velocity measurements are presented for representative cases.


2015 ◽  
Vol 34 (11) ◽  
pp. 55-62 ◽  
Author(s):  
Bingtian Li ◽  
Anzhou Cao ◽  
Xianqing Lv

2021 ◽  
Author(s):  
Maria Zamyatina ◽  
Eric Hebrard ◽  
Nathan Mayne ◽  
Benjamin Drummond

<p>We present results from a set of cloud-free simulations of exoplanet atmospheres using a coupled three-dimensional (3D) hydrodynamics-radiation-chemistry model. We report in particular our investigation of the thermodynamic and chemical structure of the atmospheres of HAT-P-11b and WASP-17b and their comparison with the results for the atmospheres of HD 189733b and HD 209458b presented in Drummond et al. (2020). We found that the abundances of chemical species from simulations with interactive chemistry depart from their respective abundances computed at local chemical equilibrium, especially at higher latitudes. To understand this departure, we analysed the CH<sub>4</sub>-to-CO conversion pathways within the Venot et al. (2019) reduced chemical network used in our model using a chemical network analysis. We found that at steady state nine CH<sub>4</sub>-to-CO conversion pathways manifest in our 3D simulations with interactive chemistry, with different pathways dominating different parts of the atmosphere and their area of influence being determined by the vertical and horizontal advection and shifting between planets.</p>


Sign in / Sign up

Export Citation Format

Share Document